6

给定一个整数 typedef:

typedef unsigned int TYPE;

或者

typedef unsigned long TYPE;

我有以下代码来反转整数的位:

TYPE max_bit= (TYPE)-1;

void reverse_int_setup()
{
    TYPE bits= (TYPE)max_bit;

    while (bits <<= 1)
        max_bit= bits;
}

TYPE reverse_int(TYPE arg)
{
    TYPE    bit_setter= 1, bit_tester= max_bit, result= 0;

    for (result= 0; bit_tester; bit_tester>>= 1, bit_setter<<= 1)
        if (arg & bit_tester)
            result|= bit_setter;
    return result;
}

只需要首先运行 reverse_int_setup(),它存储一个最高位打开的整数,然后对 reverse_int( arg ) 的任何调用都返回arg,并将其位反转(用作二叉树的键,取自增加计数器,但这或多或少无关紧要)。

在调用 reverse_int_setup(); 之后,是否有一种与平台无关的方法可以在编译时获得 max_int 的正确值?否则,是否有一种算法你认为比我对 reverse_int()的算法更好/更精简?

谢谢。

4

12 回答 12

6

以下程序用于演示用于反转位的更精简的算法,可以轻松扩展以处理 64 位数字。

#include <stdio.h>
#include <stdint.h>
int main(int argc, char**argv)
{
        int32_t x;
        if ( argc != 2 ) 
        {
                printf("Usage: %s hexadecimal\n", argv[0]);
                return 1;
        }

        sscanf(argv[1],"%x", &x);
        /* swap every neigbouring bit */
        x = (x&0xAAAAAAAA)>>1 | (x&0x55555555)<<1;
        /* swap every 2 neighbouring bits */
        x = (x&0xCCCCCCCC)>>2 | (x&0x33333333)<<2;
        /* swap every 4 neighbouring bits */
        x = (x&0xF0F0F0F0)>>4 | (x&0x0F0F0F0F)<<4;
        /* swap every 8 neighbouring bits */
        x = (x&0xFF00FF00)>>8 | (x&0x00FF00FF)<<8;
        /* and so forth, for say, 32 bit int */
        x = (x&0xFFFF0000)>>16 | (x&0x0000FFFF)<<16;
        printf("0x%x\n",x);
        return 0;
}

此代码不应包含错误,并使用 0x12345678 进行测试以生成正确答案 0x1e6a2c48。

于 2008-09-15T16:50:28.587 回答
6
#include<stdio.h>
#include<limits.h>

#define TYPE_BITS sizeof(TYPE)*CHAR_BIT

typedef unsigned long TYPE;

TYPE reverser(TYPE n)
{
    TYPE nrev = 0, i, bit1, bit2;
    int count;

    for(i = 0; i < TYPE_BITS; i += 2)
    {
        /*In each iteration, we  swap one bit on the 'right half' 
        of the number with another on the left half*/

        count = TYPE_BITS - i - 1;  /*this is used to find how many positions 
                                    to the left (and right) we gotta move 
                                    the bits in this iteration*/

        bit1 = n & (1<<(i/2)); /*Extract 'right half' bit*/
        bit1 <<= count;         /*Shift it to where it belongs*/

        bit2 = n & 1<<((i/2) + count);  /*Find the 'left half' bit*/
        bit2 >>= count;         /*Place that bit in bit1's original position*/

        nrev |= bit1;   /*Now add the bits to the reversal result*/
        nrev |= bit2;
    }
    return nrev;
}

int main()
{
    TYPE n = 6;

    printf("%lu", reverser(n));
    return 0;
}

这次我使用了 TK 中的“位数”的想法,但通过不假设一个字节包含 8 位而是使用 CHAR_BIT 宏来使其更具可移植性。代码现在更高效(删除了内部 for 循环)。我希望这次代码也稍微不那么神秘。:)

使用 count 的需要是,每次迭代中我们必须移动一位的位置的数量是不同的——我们必须将最右边的位移动 31 个位置(假设为 32 位),第二个最右边的位移动 29 个位置,依此类推在。因此,随着 i 的增加,计数必须随着每次迭代而减少。

希望这些信息有助于理解代码......

于 2008-09-16T10:06:42.217 回答
3
typedef unsigned long TYPE;

TYPE reverser(TYPE n)
{
    TYPE k = 1, nrev = 0, i, nrevbit1, nrevbit2;
    int count;

    for(i = 0; !i || (1 << i && (1 << i) != 1); i+=2)
    {
        /*In each iteration, we  swap one bit 
            on the 'right half' of the number with another 
            on the left half*/

        k = 1<<i; /*this is used to find how many positions 
                    to the left (or right, for the other bit) 
                    we gotta move the bits in this iteration*/

        count = 0;

        while(k << 1 && k << 1 != 1)
        {
            k <<= 1;
            count++;
        }

        nrevbit1 = n & (1<<(i/2));
        nrevbit1 <<= count;

        nrevbit2 = n & 1<<((i/2) + count);
        nrevbit2 >>= count;

        nrev |= nrevbit1;
        nrev |= nrevbit2;
    }
    return nrev;
}

这在 Windows 下的 gcc 中运行良好,但我不确定它是否完全独立于平台。几个值得关注的地方是:

  • for 循环中的条件 - 它假定当您将 1 移到最左边的位之外时,您会得到一个 0 和 1 的“脱落”(我所期望的以及旧 Turbo C 给 iirc 带来的好处),或者1 圈,你得到一个 1(这似乎是 gcc 的行为)。

  • 内部while循环中的条件:见上文。但是这里发生了一件奇怪的事情:在这种情况下,gcc 似乎让 1 掉出来而不是绕圈子!

代码可能很神秘:如果您有兴趣并需要解释,请不要犹豫——我会把它放在某个地方。

于 2008-09-15T17:30:30.130 回答
1

@ΤZΩΤZΙΟΥ

在回复 ΤZΩΤZΙΟΥ 的评论时,我提出了上面的修改版本,它取决于位宽的上限。

#include <stdio.h>
#include <stdint.h>
typedef int32_t TYPE;
TYPE reverse(TYPE x, int bits)
{
    TYPE m=~0;
    switch(bits)
    {
        case 64:
            x = (x&0xFFFFFFFF00000000&m)>>16 | (x&0x00000000FFFFFFFF&m)<<16;
        case 32:
            x = (x&0xFFFF0000FFFF0000&m)>>16 | (x&0x0000FFFF0000FFFF&m)<<16;
        case 16:
            x = (x&0xFF00FF00FF00FF00&m)>>8 | (x&0x00FF00FF00FF00FF&m)<<8;
        case 8:
            x = (x&0xF0F0F0F0F0F0F0F0&m)>>4 | (x&0x0F0F0F0F0F0F0F0F&m)<<4;
            x = (x&0xCCCCCCCCCCCCCCCC&m)>>2 | (x&0x3333333333333333&m)<<2;
            x = (x&0xAAAAAAAAAAAAAAAA&m)>>1 | (x&0x5555555555555555&m)<<1;
    }
    return x;
}

int main(int argc, char**argv)
{
    TYPE x;
    TYPE b = (TYPE)-1;
    int bits;
    if ( argc != 2 ) 
    {
        printf("Usage: %s hexadecimal\n", argv[0]);
        return 1;
    }
    for(bits=1;b;b<<=1,bits++);
    --bits;
    printf("TYPE has %d bits\n", bits);
    sscanf(argv[1],"%x", &x);

    printf("0x%x\n",reverse(x, bits));
    return 0;
}

笔记:

  • gcc 将警告 64 位常量
  • printfs 也会产生警告
  • 如果您需要超过 64 位,代码应该足够简单以便扩展

我提前为我在上面犯下的编码罪行道歉 - 仁慈的好先生!

于 2008-09-16T16:39:20.820 回答
1

在http://graphics.stanford.edu/~seander/bithacks.html上有一个很好的“Bit Twiddling Hacks”合集,包括各种用 C 编码的简单和不那么简单的位反转算法。

我个人喜欢“明显”算法(http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious),因为它很明显。其他一些可能需要较少的指令来执行。如果我真的需要优化某些东西,我可能会选择不太明显但速度更快的版本。否则,为了可读性、可维护性和可移植性,我会选择明显的。

于 2008-09-17T02:09:31.917 回答
1

这是一个更普遍有用的变体。它的优点是它能够在要反转的值(代码字)的位长度未知但保证不超过我们称为 maxLength 的值的情况下工作。这种情况的一个很好的例子是霍夫曼代码解压缩。

下面的代码适用于长度为 1 到 24 位的码字。它已针对在 Pentium D 上的快速执行进行了优化。请注意,每次使用它访问查找表多达 3 次。我尝试了许多变体,以牺牲更大的表(4096 和 65,536 个条目)为代价将这个数字减少到 2。这个具有 256 字节表的版本是明显的赢家,部分原因是表数据位于缓存中非常有利,也可能是因为处理器具有 8 位表查找/翻译指令。

const unsigned char table[] = {  
0x00,0x80,0x40,0xC0,0x20,0xA0,0x60,0xE0,0x10,0x90,0x50,0xD0,0x30,0xB0,0x70,0xF0,  
0x08,0x88,0x48,0xC8,0x28,0xA8,0x68,0xE8,0x18,0x98,0x58,0xD8,0x38,0xB8,0x78,0xF8,  
0x04,0x84,0x44,0xC4,0x24,0xA4,0x64,0xE4,0x14,0x94,0x54,0xD4,0x34,0xB4,0x74,0xF4,  
0x0C,0x8C,0x4C,0xCC,0x2C,0xAC,0x6C,0xEC,0x1C,0x9C,0x5C,0xDC,0x3C,0xBC,0x7C,0xFC,  
0x02,0x82,0x42,0xC2,0x22,0xA2,0x62,0xE2,0x12,0x92,0x52,0xD2,0x32,0xB2,0x72,0xF2,  
0x0A,0x8A,0x4A,0xCA,0x2A,0xAA,0x6A,0xEA,0x1A,0x9A,0x5A,0xDA,0x3A,0xBA,0x7A,0xFA,  
0x06,0x86,0x46,0xC6,0x26,0xA6,0x66,0xE6,0x16,0x96,0x56,0xD6,0x36,0xB6,0x76,0xF6,  
0x0E,0x8E,0x4E,0xCE,0x2E,0xAE,0x6E,0xEE,0x1E,0x9E,0x5E,0xDE,0x3E,0xBE,0x7E,0xFE,  
0x01,0x81,0x41,0xC1,0x21,0xA1,0x61,0xE1,0x11,0x91,0x51,0xD1,0x31,0xB1,0x71,0xF1,  
0x09,0x89,0x49,0xC9,0x29,0xA9,0x69,0xE9,0x19,0x99,0x59,0xD9,0x39,0xB9,0x79,0xF9,  
0x05,0x85,0x45,0xC5,0x25,0xA5,0x65,0xE5,0x15,0x95,0x55,0xD5,0x35,0xB5,0x75,0xF5,  
0x0D,0x8D,0x4D,0xCD,0x2D,0xAD,0x6D,0xED,0x1D,0x9D,0x5D,0xDD,0x3D,0xBD,0x7D,0xFD,  
0x03,0x83,0x43,0xC3,0x23,0xA3,0x63,0xE3,0x13,0x93,0x53,0xD3,0x33,0xB3,0x73,0xF3,  
0x0B,0x8B,0x4B,0xCB,0x2B,0xAB,0x6B,0xEB,0x1B,0x9B,0x5B,0xDB,0x3B,0xBB,0x7B,0xFB,  
0x07,0x87,0x47,0xC7,0x27,0xA7,0x67,0xE7,0x17,0x97,0x57,0xD7,0x37,0xB7,0x77,0xF7,  
0x0F,0x8F,0x4F,0xCF,0x2F,0xAF,0x6F,0xEF,0x1F,0x9F,0x5F,0xDF,0x3F,0xBF,0x7F,0xFF};  


const unsigned short masks[17] =  
{0,0,0,0,0,0,0,0,0,0X0100,0X0300,0X0700,0X0F00,0X1F00,0X3F00,0X7F00,0XFF00};  


unsigned long codeword;   // value to be reversed, occupying the low 1-24 bits  
unsigned char maxLength;  // bit length of longest possible codeword (<= 24)  
unsigned char sc;         // shift count in bits and index into masks array  


if (maxLength <= 8)  
{  
   codeword = table[codeword << (8 - maxLength)];  
}  
else  
{  
   sc = maxLength - 8;  

   if (maxLength <= 16)  
   {
      codeword = (table[codeword & 0X00FF] << sc)  
               |  table[codeword >> sc];  
   }  
   else if (maxLength & 1)  // if maxLength is 17, 19, 21, or 23  
   {  
      codeword = (table[codeword & 0X00FF] << sc)  
               |  table[codeword >> sc] |  
                 (table[(codeword & masks[sc]) >> (sc - 8)] << 8);  
   }  
   else  // if maxlength is 18, 20, 22, or 24  
   {  
      codeword = (table[codeword & 0X00FF] << sc)  
               |  table[codeword >> sc]  
               | (table[(codeword & masks[sc]) >> (sc >> 1)] << (sc >> 1));  
   }  
}  
于 2009-12-04T05:36:40.530 回答
0

怎么样:

long temp = 0;
int counter = 0;
int number_of_bits = sizeof(value) * 8; // get the number of bits that represent value (assuming that it is aligned to a byte boundary)

while(value > 0)            // loop until value is empty
{
    temp <<= 1;             // shift whatever was in temp left to create room for the next bit
    temp |= (value & 0x01); // get the lsb from value and set as lsb in temp
    value >>= 1;            // shift value right by one to look at next lsb

    counter++;
}

value = temp;

if (counter < number_of_bits)
{
    value <<= counter-number_of_bits;
}

(我假设您知道有多少位值保存并且它存储在 number_of_bits 中)

显然 temp 需要是可以想象的最长的数据类型,并且当您将 temp 复制回 value 时, temp 中的所有无关位都应该神奇地消失(我认为!)。

或者,“c”方式是说:

while(value)

你的选择

于 2008-09-15T15:17:51.447 回答
0

我们可以将反转所有可能的 1 字节序列的结果存储在一个数组中(256 个不同的条目),然后使用对该表的查找和一些 oring 逻辑的组合来获得整数的反转。

于 2008-09-15T15:37:05.970 回答
0

这是 TK 解决方案的变体和更正,它可能比 sundar 的解决方案更清晰。它从 t 中获取单个位并将它们推入 return_val:

typedef unsigned long TYPE;
#define TYPE_BITS sizeof(TYPE)*8

TYPE reverser(TYPE t)
{
    unsigned int i;
    TYPE return_val = 0
    for(i = 0; i < TYPE_BITS; i++)
    {/*foreach bit in TYPE*/
        /* shift the value of return_val to the left and add the rightmost bit from t */
        return_val = (return_val << 1) + (t & 1);
        /* shift off the rightmost bit of t */
        t = t >> 1;
    }
    return(return_val);
}
于 2008-09-16T16:06:12.460 回答
0

适用于任何大小的任何类型的对象的通用方法是反转对象的字节数,并反转每个字节中的位顺序。在这种情况下,位级算法与具体数量的位(一个字节)相关联,而“可变”逻辑(关于大小)被提升到整个字节的级别。

于 2009-12-04T05:44:04.947 回答
0

如果位反转是时间关键的,并且主要与 FFT 结合使用,最好是存储整个位反转数组。在任何情况下,该数组的大小都将小于必须在 FFT Cooley-Tukey 算法中预先计算的单位根。计算数组的一种简单方法是:

int BitReverse[Size]; // Size is power of 2
void Init()
{
   BitReverse[0] = 0;
   for(int i = 0; i < Size/2; i++)
   {
      BitReverse[2*i] = BitReverse[i]/2;
      BitReverse[2*i+1] = (BitReverse[i] + Size)/2;
   }
} // end it's all
于 2010-03-22T02:06:09.857 回答
0

这是我对自由空间解决方案的概括(以防有一天我们得到 128 位机器)。当使用 gcc -O3 编译时,它会产生无跳转代码,并且显然对 foo_t 在正常机器上的定义不敏感。不幸的是,它确实取决于 shift 是 2 的幂!

#include <limits.h>
#include <stdio.h>

typedef unsigned long foo_t;

foo_t reverse(foo_t x)
{
        int shift = sizeof (x) * CHAR_BIT / 2;
        foo_t mask = (1 << shift) - 1;
        int i;

        for (i = 0; shift; i++) {
                x = ((x & mask) << shift) | ((x & ~mask) >> shift);
                shift >>= 1;
                mask ^= (mask << shift);
        }

        return x;
}       

int main() {
        printf("reverse = 0x%08lx\n", reverse(0x12345678L));
}
于 2011-02-18T01:38:20.283 回答