0

我正在使用 google API 函数来提取表情,它会检测图像中的所有面孔

def detect_faces_uri(uri):
    """Detects faces in the file located in Google Cloud Storage or the web."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.types.Image()
    image.source.image_uri = uri

    response = client.face_detection(image=image)
    faces = response.face_annotations

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
                       'LIKELY', 'VERY_LIKELY')
    print('Faces:')

    for face in faces:
        print('anger: {}'.format(likelihood_name[face.anger_likelihood]))
        print('joy: {}'.format(likelihood_name[face.joy_likelihood]))
        print('surprise: {}'.format(likelihood_name[face.surprise_likelihood]))

        vertices = (['({},{})'.format(vertex.x, vertex.y)
                    for vertex in face.bounding_poly.vertices])

        print('face bounds: {}'.format(','.join(vertices)))

    if response.error.message:
        raise Exception(
            '{}\nFor more info on error messages, check: '
            'https://cloud.google.com/apis/design/errors'.format(
                response.error.message))

这是我得到的输出:

Faces:
anger: VERY_UNLIKELY
joy: VERY_LIKELY
surprise: VERY_UNLIKELY
face bounds: (1077,157),(2146,157),(2146,1399),(1077,1399)
anger: VERY_UNLIKELY
joy: VERY_UNLIKELY
surprise: VERY_UNLIKELY
face bounds: (144,1273),(793,1273),(793,1844),(144,1844)
anger: VERY_UNLIKELY
joy: VERY_UNLIKELY
surprise: VERY_UNLIKELY
face bounds: (785,167),(1100,167),(1100,534),(785,534)

我需要对多张图像使用此功能并希望获得一个数据框,但我不确定如何以我想要的方式将其转换为数据框输出......我需要这样的输出:

所需的输出:

URL                   Face      Anger     Joy       Surprised
abc.com               Face1     Likely    Unlikely   Unlikely
abc.com               Face2     Unlikely  Likely    Unlikely
.

. .

有什么帮助吗?

4

1 回答 1

0

首先启动一个新的空数据框:

df = pd.DataFrame() 

然后在打印命令旁边添加一个新行:

newline= pd.DataFrame({"x":[vertex.x], "y":[vertex.y]}) 

然后将新行附加到df:

df = df.append(newline)
于 2020-09-07T08:34:20.883 回答