我正在使用 google API 函数来提取表情,它会检测图像中的所有面孔
def detect_faces_uri(uri):
"""Detects faces in the file located in Google Cloud Storage or the web."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.types.Image()
image.source.image_uri = uri
response = client.face_detection(image=image)
faces = response.face_annotations
# Names of likelihood from google.cloud.vision.enums
likelihood_name = ('UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE',
'LIKELY', 'VERY_LIKELY')
print('Faces:')
for face in faces:
print('anger: {}'.format(likelihood_name[face.anger_likelihood]))
print('joy: {}'.format(likelihood_name[face.joy_likelihood]))
print('surprise: {}'.format(likelihood_name[face.surprise_likelihood]))
vertices = (['({},{})'.format(vertex.x, vertex.y)
for vertex in face.bounding_poly.vertices])
print('face bounds: {}'.format(','.join(vertices)))
if response.error.message:
raise Exception(
'{}\nFor more info on error messages, check: '
'https://cloud.google.com/apis/design/errors'.format(
response.error.message))
这是我得到的输出:
Faces:
anger: VERY_UNLIKELY
joy: VERY_LIKELY
surprise: VERY_UNLIKELY
face bounds: (1077,157),(2146,157),(2146,1399),(1077,1399)
anger: VERY_UNLIKELY
joy: VERY_UNLIKELY
surprise: VERY_UNLIKELY
face bounds: (144,1273),(793,1273),(793,1844),(144,1844)
anger: VERY_UNLIKELY
joy: VERY_UNLIKELY
surprise: VERY_UNLIKELY
face bounds: (785,167),(1100,167),(1100,534),(785,534)
我需要对多张图像使用此功能并希望获得一个数据框,但我不确定如何以我想要的方式将其转换为数据框输出......我需要这样的输出:
所需的输出:
URL Face Anger Joy Surprised
abc.com Face1 Likely Unlikely Unlikely
abc.com Face2 Unlikely Likely Unlikely
.
. .
有什么帮助吗?