5

使用 python 中的 yahoo Finance 包,我可以下载相关数据以显示 OCHL。我的目标是找出一天中股票平均最高的时间。

这是下载数据的代码:

import yfinance as yf
import pandas as pd

df = yf.download(
        tickers = "APPL",
        period = "60d",
        interval = "5m",
        auto_adjust = True,
        group_by = 'ticker',
        prepost = True,
    )

maxTimes = df.groupby([df.index.month, df.index.day, df.index.day_name()])['High'].idxmax()

这给了我这样的东西:

Datetime  Datetime  Datetime 
6         2         Tuesday     2020-06-02 19:45:00-04:00
          3         Wednesday   2020-06-03 15:50:00-04:00
          4         Thursday    2020-06-04 10:30:00-04:00
          5         Friday      2020-06-05 11:30:00-04:00
...
8         3         Monday      2020-08-03 14:40:00-04:00
          4         Tuesday     2020-08-04 18:10:00-04:00
          5         Wednesday   2020-08-05 11:10:00-04:00
          6         Thursday    2020-08-06 16:20:00-04:00
          7         Friday      2020-08-07 15:50:00-04:00
Name: High, dtype: datetime64[ns, America/New_York]

认为我创建的 maxTimes 对象应该给我一天中最高点的时间,但是我需要的是:

Monday    12:00
Tuesday   13:25
Wednesday 09:35
Thurs     16:10
Fri       12:05

有谁能帮我确定如何让我的数据看起来像这样?

4

1 回答 1

2

这应该有效:

import yfinance as yf
import pandas as pd

df = yf.download(
        tickers = "AAPL",
        period = "60d",
        interval = "5m",
        auto_adjust = True,
        group_by = 'ticker',
        prepost = True,
    )

maxTimes = df.groupby([df.index.month, df.index.day, df.index.day_name()])['High'].idxmax()

# Drop date
maxTimes = maxTimes.apply(lambda x: x.time())

# Drop unused sub-indexes
maxTimes = maxTimes.droplevel(level=[0,1])

# To seconds
maxTimes = maxTimes.apply(lambda t: (t.hour * 60 + t.minute) * 60 + t.second)

# Get average
maxTimes =  maxTimes.groupby(maxTimes.index).mean()

# Back to time
maxTimes = pd.to_datetime(maxTimes, unit='s').apply(lambda x: x.time())

print (maxTimes)

'''
Output:

Datetime
Friday       11:59:32.727272
Monday              14:15:00
Thursday            13:21:40
Tuesday             10:35:00
Wednesday           11:53:45
Name: High, dtype: object

'''
于 2020-08-25T17:10:14.823 回答