我确信我遗漏了一些明显的东西,但这是我第一次在统计类之外使用 SEM。
大局是我正在尝试对多元调节中介分析进行建模,直到今天早上我开始遇到此错误时才遇到问题:
Error in eigen(VarCov, symmetric = TRUE, only.values = TRUE) :
infinite or missing values in 'x'
我想我已经完成了我之前关于这个错误的问题的尽职调查,并且我推测我观察到的协方差矩阵是奇异的。我一直试图找出导致问题的确切原因,并最终将我的模型缩减为单个潜在变量,但我仍然遇到此错误。因此,我在两个观察到的变量上对其进行了测试,得到了相同的错误,并使用三个不同的观察到的变量进行了尝试:
simple_data = modmed_subset[,c("baq_ff_1RC", "baq_ff_2RC")]
simple = '
#measurement model
feelfat =~ baq_ff_1RC + baq_ff_2RC'
fitted_simple = sem(simple, simple_data, se = "bootstrap", bootstrap = 10)
#>Error in eigen(VarCov, symmetric = TRUE, only.values = TRUE) :
#> infinite or missing values in 'x'
View(simple_data)
cor(simple_data, use="complete.obs")
#> baq_ff_1RC baq_ff_2RC
#>baq_ff_1RC 1.0000000 0.6429606
#>baq_ff_2RC 0.6429606 1.0000000
simple_data = modmed_subset[,c("baq_ff_3RC", "baq_ff_4RC", "baq_ff_5RC")]
simple = '
#measurement model
feelfat =~ baq_ff_3RC + baq_ff_4RC + baq_ff_5RC
#regression model'
fitted_simple = sem(simple, simple_data, se = "bootstrap", bootstrap = 10)
#>Error in eigen(VarCov, symmetric = TRUE, only.values = TRUE) :
#> infinite or missing values in 'x'
cor(simple_data, use="complete.obs")
#> baq_ff_3RC baq_ff_4RC baq_ff_5RC
#>baq_ff_3RC 1.0000000 0.6016666 0.6527502
#>baq_ff_4RC 0.6016666 1.0000000 0.5865960
#>baq_ff_5RC 0.6527502 0.5865960 1.0000000
我仍然遇到同样的错误。我应该提到,我还在一个数据集上测试了这些,只有具有完整数据的案例并得到了相同的错误。
PS:我知道这是极少数的引导重采样,但由于我在排除故障时一直在重新运行模型,所以我选择了它来保持运行。
以下是一些数据(来自省略不完整案例的数据框)
structure(list(baq_ff_3RC = c(4, 5, 5, 3, 4, 4, 5, 1, 5, 5, 2,
4, 5, 2, 1, 1, 3, 5, 5, 4, 2, 1, 1, 4, 5, 3, 3, 4, 5, 4, 5, 1,
3, 1, 5, 5, 4, 4, 2, 5, 2, 4, 5, 5, 5, 3, 2, 5, 3, 3, 1, 4, 1,
2, 1, 5, 2, 1, 5, 3, 1, 4, 1, 5, 4, 1, 4, 4, 2, 5, 4, 4, 3, 3,
1, 5, 5, 3, 3, 4, 4, 3, 2, 3, 2, 2, 2, 5, 4, 4, 5, 4, 4, 4, 5,
4, 4, 3, 4, 4, 1, 2, 1, 3, 5, 5, 4, 5, 3, 5, 2, 3, 3, 3, 4, 3,
4, 2, 4, 2, 1, 5, 1, 3, 4, 2, 4, 1, 4, 3, 1, 3, 4, 3, 4, 4, 2,
3, 5, 5, 3, 3, 3, 2, 4, 4, 4, 1, 4, 2, 1, 4, 2, 2, 2, 5, 4, 3,
2, 4, 2, 5, 3, 4, 4, 4, 4, 2, 4, 4, 1, 5, 3, 3, 5, 2, 3, 4, 2,
5, 4, 2, 3, 2, 4, 5, 5, 4, 2, 1, 3, 5, 4, 5, 5, 4, 5, 5, 5, 5,
1, 1, 1, 3, 4, 1, 4, 5, 5, 1, 4, 5, 5, 4, 4, 4, 4, 2, 5, 4, 4,
2, 4, 5, 4, 1, 5, 4, 4, 5, 3, 3, 5, 5, 2, 4, 1, 3, 4, 4, 4, 4,
4, 5, 3, 4, 4, 4, 1, 2, 3, 1, 4, 1, 4, 5, 5, 4, 4, 4, 5, 4, 4,
1, 3, 3, 4, 1, 5, 4, 4, 2, 5, 1, 2, 4, 1, 4, 4, 4, 4, 1, 1, 1,
5, 4, 1, 1, 1, 5, 1, 1, 1, 5, 3, 4, 1, 3, 4, 4, 1, 4, 4, 1, 1,
3, 3, 4, 5, 4, 2, 3, 5, 3, 3, 4, 1, 5, 3, 2, 5, 3, 4, 2, 4, 5,
3, 4, 2, 2, 4, 2, 2, 5, 3, 2, 4, 3, 2, 2, 3, 5, 1, 4, 2, 4, 4,
3, 3, 2, 2, 1, 4, 1, 4, 4, 5, 5, 1, 1, 2, 4, 1, 2, 1, 3, 4, 1,
3, 4, 5, 4, 4, 4, 5, 3, 1, 4, 5, 4, 5, 5, 5, 1, 1, 4, 4, 4, 5,
1, 1, 3, 2, 2, 3, 4, 5, 4, 5, 5, 1, 5, 4, 4, 3, 4, 4, 2, 3, 2,
5, 4, 4, 5, 5, 5, 3, 2, 3, 4, 5, 2, 4, 5, 5, 4, 4, 5, 4, 2, 3,
1, 2, 1, 4, 1, 5, 4, 1, 1, 1, 2, 2, 4, 5, 1, 4, 5, 4, 4, 5, 5,
5, 4, 4, 2, 2, 3, 2, 3, 5, 3, 5, 4, 4, 1, 3, 4, 1, 1, 2, 4, 1,
1, 2, 2, 2, 1, 1, 5, 5, 2, 2, 2, 3, 2, 4, 1, 5, 5, 2, 4, 3, 4,
5, 4, 1, 2, 4, 2, 4, 5, 3, 5, 2, 4, 5, 4, 1, 1, 2, 5, 4, 1, 5,
4, 5, 3, 4, 3, 1, 1, 4, 5, 4, 1, 4, 5, 1, 4, 4, 2, 4, 4, 4, 2,
2, 3, 1, 4, 5, 5, 2, 2, 4, 4, 4, 1, 4, 1, 1, 5, 5, 1, 4, 4, 5,
2, 5, 1, 4, 3, 5, 5, 4, 4, 2, 5, 4, 2, 4, 5, 2, 2, 3, 4, 2, 4,
1, 2, 5, 3, 5, 5, 3, 5, 3, 5, 3, 2, 3, 4, 2, 5, 5, 4, 4, 5, 4,
1, 4, 4, 4, 4, 3, 1, 2, 5, 3, 5, 1, 4, 5, 3, 1, 5, 5, 4, 5, 4,
1, 4, 5, 5, 5, 3, 1, 5, 2, 2, 3, 5, 5, 4, 1, 4, 1, 4, 5, 4, 5,
4, 5, 4, 4, 5, 5, 5, 2, 2, 3, 4, 5, 5, 4, 1, 2, 1, 4, 2, 5, 5,
1, 5, 5, 4, 3, 4, 5, 4, 1, 5, 4, 5, 5, 2, 3, 3, 4, 1, 5, 4, 2,
4, 3, 4, 4, 1, 4, 2, 5, 1, 1, 5, 2, 2, 3, 5, 4, 5, 5, 2, 3, 4,
5, 5, 1, 5, 4, 4, 5, 2, 5, 1, 5, 4, 5, 2, 4, 5, 4, 3, 4, 1, 1,
4, 4, 2, 5, 5, 2, 5, 3, 3, 4, 1, 2, 3, 1, 4, 3, 4, 2, 5, 1, 4,
3, 3, 1, 5, 3, 5, 2, 5, 1, 4, 5, 5, 4, 2, 1, 1, 5, 1, 3, 4, 1,
3, 4, 1, 4, 4, 1, 1, 3, 5, 4, 4, 5, 3, 4, 1, 4, 4, 5, 4, 1, 4,
2, 3, 5, 1, 1, 5, 3, 5, 4, 5, 3, 1, 1, 1, 3, 5, 5, 1, 4, 5, 4,
2, 4, 4, 2, 1, 3, 4, 5, 5, 5, 5, 5, 3), baq_ff_4RC = c(5, 4,
4, 4, 3, 4, 5, 2, 5, 5, 4, 4, 5, 4, 1, 4, 5, 5, 5, 4, 4, 3, 1,
4, 5, 4, 3, 3, 4, 3, 5, 2, 3, 3, 5, 5, 4, 4, 2, 5, 3, 5, 1, 5,
5, 1, 2, 4, 4, 4, 2, 3, 1, 3, 2, 5, 4, 2, 5, 3, 2, 4, 1, 3, 4,
5, 5, 4, 5, 1, 4, 1, 3, 4, 1, 3, 5, 3, 3, 4, 4, 4, 3, 3, 3, 1,
3, 5, 5, 5, 4, 4, 5, 5, 5, 3, 3, 4, 5, 2, 4, 2, 2, 4, 4, 5, 3,
1, 3, 5, 2, 4, 3, 3, 4, 2, 4, 4, 3, 2, 2, 3, 2, 4, 5, 3, 4, 2,
4, 4, 1, 4, 2, 5, 1, 5, 3, 2, 5, 5, 2, 4, 3, 4, 3, 4, 4, 2, 4,
2, 1, 4, 4, 4, 2, 5, 3, 3, 3, 4, 3, 5, 4, 5, 4, 4, 4, 4, 3, 3,
2, 5, 5, 5, 4, 2, 3, 4, 4, 5, 2, 3, 4, 3, 5, 4, 4, 5, 3, 3, 3,
5, 3, 4, 5, 3, 5, 5, 5, 4, 2, 2, 1, 2, 4, 1, 4, 5, 4, 1, 3, 5,
5, 4, 5, 4, 4, 4, 4, 3, 3, 4, 2, 5, 4, 4, 4, 4, 5, 5, 1, 4, 5,
5, 4, 4, 2, 2, 2, 4, 5, 3, 4, 5, 5, 4, 5, 5, 1, 4, 4, 3, 5, 1,
4, 1, 4, 3, 3, 4, 5, 3, 4, 1, 3, 2, 4, 1, 5, 4, 3, 2, 4, 3, 3,
4, 1, 3, 4, 5, 4, 3, 3, 5, 5, 5, 1, 2, 1, 5, 1, 4, 3, 5, 5, 5,
5, 4, 2, 3, 1, 4, 3, 1, 2, 4, 2, 5, 4, 4, 2, 2, 5, 3, 2, 4, 3,
4, 5, 1, 3, 4, 4, 2, 2, 5, 4, 3, 5, 4, 5, 2, 2, 4, 4, 4, 3, 2,
4, 1, 3, 5, 2, 4, 2, 5, 4, 3, 5, 2, 1, 1, 5, 4, 2, 2, 5, 4, 4,
5, 4, 5, 1, 3, 1, 5, 4, 1, 4, 4, 5, 1, 4, 2, 4, 4, 2, 4, 5, 4,
5, 4, 5, 1, 3, 2, 5, 3, 4, 4, 1, 2, 4, 3, 3, 3, 4, 5, 5, 5, 2,
5, 5, 5, 3, 2, 4, 3, 3, 3, 5, 4, 4, 5, 4, 5, 3, 2, 4, 5, 5, 3,
5, 4, 5, 4, 4, 5, 4, 3, 4, 1, 2, 2, 5, 2, 5, 4, 1, 2, 1, 3, 4,
3, 5, 3, 5, 5, 5, 5, 5, 5, 4, 4, 3, 2, 5, 2, 1, 4, 5, 4, 5, 2,
3, 1, 5, 5, 2, 3, 4, 4, 5, 4, 3, 4, 4, 4, 1, 5, 5, 4, 1, 4, 4,
1, 4, 1, 5, 5, 1, 3, 4, 5, 5, 4, 1, 4, 3, 2, 4, 5, 2, 5, 1, 5,
1, 4, 4, 1, 4, 3, 4, 2, 5, 4, 5, 4, 4, 4, 2, 1, 4, 4, 3, 2, 3,
3, 1, 4, 4, 4, 4, 2, 3, 3, 1, 2, 2, 4, 4, 5, 1, 2, 4, 4, 4, 2,
3, 2, 4, 4, 4, 2, 4, 1, 5, 3, 5, 2, 3, 2, 4, 5, 5, 4, 1, 5, 4,
2, 5, 1, 3, 3, 4, 2, 2, 4, 4, 4, 4, 4, 5, 5, 2, 5, 2, 5, 4, 3,
2, 3, 4, 5, 5, 2, 4, 5, 4, 4, 4, 4, 4, 4, 1, 2, 3, 5, 4, 5, 1,
5, 5, 4, 1, 4, 5, 5, 5, 4, 1, 4, 5, 4, 5, 4, 1, 4, 1, 4, 2, 5,
4, 4, 2, 5, 4, 5, 4, 5, 5, 4, 3, 4, 5, 5, 4, 3, 4, 1, 4, 5, 5,
5, 4, 1, 4, 3, 4, 1, 5, 5, 1, 5, 5, 2, 2, 2, 5, 3, 1, 5, 4, 5,
4, 3, 3, 4, 4, 1, 5, 3, 3, 5, 3, 3, 3, 3, 4, 2, 5, 5, 1, 5, 4,
4, 2, 3, 4, 4, 5, 3, 5, 4, 5, 5, 1, 4, 4, 5, 4, 4, 4, 2, 5, 4,
2, 5, 4, 2, 3, 2, 5, 1, 4, 4, 5, 4, 5, 5, 4, 2, 1, 5, 4, 1, 4,
4, 1, 5, 3, 3, 2, 4, 1, 5, 4, 3, 3, 4, 4, 5, 4, 5, 2, 2, 5, 2,
4, 2, 1, 5, 5, 3, 3, 2, 1, 4, 2, 4, 4, 5, 1, 1, 4, 4, 5, 3, 2,
2, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 5, 1, 2, 4, 3, 5, 4, 5, 4, 2,
2, 5, 2, 5, 4, 1, 4, 5, 2, 2, 3, 5, 2, 1, 2, 4, 1, 5, 5, 5, 5,
3), baq_ff_5RC = c(4, 4, 3, 3, 4, 4, 5, 2, 3, 5, 4, 4, 5, 2,
1, 2, 3, 5, 5, 4, 5, 2, 3, 5, 5, 4, 4, 3, 4, 4, 4, 1, 3, 1, 5,
3, 1, 3, 3, 4, 3, 4, 5, 5, 5, 1, 4, 5, 4, 5, 3, 4, 1, 4, 1, 5,
4, 1, 5, 2, 1, 4, 1, 4, 5, 4, 5, 2, 2, 5, 4, 3, 3, 4, 1, 4, 2,
4, 2, 3, 4, 4, 3, 3, 3, 2, 5, 5, 3, 4, 4, 4, 4, 4, 5, 3, 1, 3,
3, 4, 2, 4, 2, 2, 5, 4, 4, 4, 4, 5, 3, 4, 4, 3, 4, 4, 3, 4, 1,
2, 1, 4, 4, 4, 4, 2, 2, 1, 4, 2, 1, 3, 3, 5, 4, 4, 5, 3, 5, 5,
3, 4, 2, 4, 2, 2, 4, 1, 5, 2, 1, 4, 4, 2, 3, 5, 4, 2, 4, 4, 2,
5, 3, 3, 2, 3, 4, 4, 4, 3, 1, 5, 3, 5, 2, 4, 4, 4, 4, 4, 2, 3,
3, 4, 4, 5, 4, 4, 2, 2, 5, 5, 3, 2, 5, 4, 5, 2, 5, 4, 4, 3, 2,
4, 3, 1, 4, 5, 5, 1, 3, 5, 5, 2, 3, 4, 5, 2, 4, 4, 3, 4, 4, 4,
4, 1, 4, 3, 4, 5, 3, 2, 5, 5, 5, 4, 1, 4, 3, 3, 4, 4, 3, 5, 2,
4, 5, 5, 1, 2, 2, 2, 2, 1, 4, 4, 4, 4, 3, 3, 5, 4, 4, 1, 2, 3,
2, 2, 5, 4, 2, 1, 5, 1, 3, 4, 1, 2, 4, 4, 4, 3, 4, 1, 5, 4, 1,
3, 1, 4, 1, 1, 3, 5, 4, 4, 1, 3, 3, 4, 1, 4, 1, 1, 1, 2, 1, 5,
4, 4, 5, 4, 5, 4, 4, 5, 2, 2, 5, 1, 2, 2, 4, 3, 4, 5, 4, 4, 3,
2, 3, 3, 4, 3, 2, 4, 4, 4, 4, 2, 4, 5, 4, 4, 4, 3, 4, 4, 4, 2,
1, 1, 5, 3, 4, 2, 5, 5, 4, 5, 3, 4, 1, 3, 1, 4, 4, 1, 4, 2, 4,
2, 4, 3, 4, 2, 1, 4, 5, 4, 5, 5, 2, 1, 2, 4, 3, 5, 5, 2, 1, 4,
4, 2, 3, 4, 5, 4, 5, 5, 3, 5, 2, 5, 4, 3, 4, 3, 2, 2, 5, 4, 3,
5, 4, 4, 4, 1, 5, 5, 4, 4, 5, 4, 5, 4, 4, 5, 5, 3, 3, 1, 3, 1,
4, 1, 4, 4, 1, 1, 1, 5, 3, 2, 5, 3, 5, 4, 4, 5, 5, 5, 5, 4, 4,
5, 4, 3, 2, 2, 5, 4, 5, 3, 4, 1, 1, 4, 4, 1, 1, 4, 1, 2, 2, 1,
2, 1, 1, 5, 5, 3, 4, 2, 3, 1, 4, 4, 5, 5, 1, 3, 5, 4, 5, 2, 1,
4, 4, 2, 5, 3, 2, 4, 2, 4, 5, 4, 4, 1, 2, 1, 4, 3, 5, 4, 5, 3,
5, 5, 3, 1, 5, 3, 4, 2, 4, 5, 1, 4, 4, 3, 2, 1, 1, 3, 1, 4, 3,
4, 4, 4, 1, 2, 5, 4, 2, 1, 2, 1, 2, 3, 4, 1, 4, 1, 5, 4, 5, 1,
4, 4, 4, 5, 4, 2, 2, 5, 2, 1, 4, 5, 1, 2, 1, 4, 4, 4, 3, 3, 4,
2, 5, 5, 3, 5, 4, 5, 4, 3, 2, 4, 4, 5, 5, 2, 4, 5, 2, 2, 4, 2,
2, 4, 2, 2, 3, 5, 4, 5, 1, 5, 5, 2, 1, 4, 5, 4, 4, 4, 1, 4, 5,
5, 5, 3, 1, 5, 2, 3, 3, 5, 5, 5, 2, 4, 4, 4, 4, 4, 5, 4, 2, 4,
5, 4, 4, 5, 4, 1, 3, 4, 4, 5, 4, 1, 4, 1, 5, 2, 5, 4, 1, 5, 5,
2, 4, 2, 5, 4, 1, 5, 5, 3, 5, 1, 3, 4, 3, 1, 5, 2, 2, 3, 2, 4,
4, 2, 5, 2, 5, 2, 2, 5, 4, 2, 4, 2, 4, 4, 5, 2, 4, 4, 5, 5, 1,
5, 4, 4, 1, 4, 4, 1, 5, 4, 5, 4, 4, 3, 4, 2, 4, 1, 3, 4, 4, 2,
5, 5, 2, 2, 4, 4, 3, 1, 4, 4, 1, 4, 4, 4, 4, 5, 1, 2, 3, 4, 4,
5, 4, 4, 3, 5, 3, 3, 5, 5, 1, 2, 1, 1, 5, 1, 2, 3, 1, 3, 2, 4,
4, 4, 1, 1, 2, 5, 5, 3, 4, 5, 4, 2, 2, 4, 4, 4, 3, 3, 1, 3, 5,
1, 2, 5, 4, 5, 1, 5, 5, 1, 1, 5, 1, 5, 2, 1, 2, 5, 4, 4, 3, 4,
2, 1, 3, 4, 5, 5, 5, 5, 5, 4)), row.names = c(1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L,
32L, 33L, 35L, 36L, 37L, 38L, 39L, 40L, 43L, 44L, 45L, 46L, 47L,
48L, 49L, 50L, 51L, 52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L,
61L, 62L, 63L, 64L, 65L, 66L, 67L, 68L, 69L, 71L, 72L, 73L, 74L,
76L, 77L, 78L, 79L, 80L, 81L, 82L, 84L, 85L, 86L, 87L, 88L, 89L,
90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L,
102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 112L,
113L, 114L, 115L, 116L, 117L, 118L, 119L, 120L, 121L, 122L, 123L,
124L, 125L, 126L, 127L, 128L, 129L, 130L, 132L, 133L, 134L, 135L,
136L, 137L, 138L, 139L, 141L, 142L, 143L, 144L, 145L, 146L, 147L,
148L, 149L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L,
160L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L, 170L, 171L,
172L, 174L, 175L, 177L, 179L, 180L, 181L, 182L, 184L, 186L, 187L,
188L, 189L, 190L, 191L, 192L, 194L, 195L, 196L, 197L, 198L, 199L,
200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L, 210L,
211L, 212L, 214L, 215L, 216L, 217L, 218L, 219L, 220L, 221L, 222L,
223L, 224L, 225L, 227L, 228L, 229L, 230L, 231L, 232L, 233L, 234L,
235L, 236L, 237L, 238L, 239L, 240L, 241L, 242L, 243L, 244L, 245L,
246L, 247L, 248L, 249L, 250L, 251L, 252L, 253L, 254L, 256L, 257L,
258L, 259L, 260L, 261L, 262L, 263L, 264L, 265L, 266L, 267L, 268L,
269L, 271L, 272L, 273L, 274L, 275L, 276L, 277L, 278L, 280L, 281L,
282L, 283L, 284L, 285L, 286L, 287L, 288L, 289L, 290L, 291L, 292L,
293L, 294L, 295L, 296L, 297L, 298L, 299L, 300L, 301L, 302L, 303L,
304L, 305L, 308L, 309L, 310L, 311L, 312L, 313L, 314L, 315L, 316L,
317L, 318L, 319L, 320L, 321L, 322L, 325L, 326L, 327L, 328L, 329L,
330L, 331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L, 339L, 340L,
341L, 342L, 343L, 344L, 345L, 346L, 347L, 348L, 350L, 351L, 352L,
353L, 354L, 355L, 357L, 358L, 360L, 361L, 363L, 364L, 366L, 367L,
368L, 369L, 370L, 371L, 372L, 373L, 374L, 375L, 376L, 377L, 378L,
379L, 380L, 381L, 382L, 383L, 385L, 386L, 387L, 388L, 390L, 391L,
392L, 393L, 394L, 395L, 396L, 397L, 398L, 399L, 400L, 401L, 402L,
403L, 404L, 405L, 406L, 407L, 408L, 409L, 410L, 411L, 412L, 414L,
415L, 416L, 417L, 418L, 419L, 420L, 421L, 422L, 423L, 424L, 425L,
427L, 428L, 429L, 430L, 431L, 432L, 433L, 434L, 435L, 436L, 437L,
438L, 439L, 440L, 441L, 442L, 443L, 444L, 445L, 446L, 447L, 448L,
449L, 450L, 451L, 453L, 455L, 456L, 457L, 458L, 460L, 461L, 462L,
463L, 464L, 465L, 466L, 467L, 468L, 469L, 470L, 471L, 472L, 473L,
474L, 475L, 476L, 477L, 478L, 479L, 480L, 482L, 483L, 484L, 485L,
486L, 487L, 488L, 489L, 490L, 491L, 492L, 493L, 495L, 496L, 497L,
498L, 499L, 500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L,
509L, 510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L, 519L,
520L, 521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L, 529L, 530L,
531L, 532L, 533L, 534L, 535L, 536L, 537L, 538L, 539L, 540L, 541L,
542L, 543L, 544L, 546L, 547L, 548L, 549L, 550L, 551L, 552L, 553L,
554L, 555L, 556L, 557L, 558L, 559L, 560L, 561L, 562L, 563L, 564L,
565L, 566L, 567L, 568L, 569L, 570L, 571L, 572L, 573L, 574L, 575L,
576L, 577L, 578L, 579L, 580L, 581L, 582L, 583L, 584L, 585L, 586L,
587L, 588L, 589L, 590L, 591L, 592L, 593L, 594L, 595L, 596L, 597L,
598L, 599L, 600L, 601L, 602L, 603L, 604L, 605L, 606L, 607L, 608L,
609L, 610L, 611L, 612L, 613L, 614L, 615L, 616L, 617L, 618L, 619L,
620L, 621L, 622L, 623L, 624L, 625L, 626L, 627L, 628L, 629L, 630L,
631L, 632L, 633L, 634L, 635L, 636L, 641L, 642L, 643L, 645L, 646L,
647L, 648L, 649L, 650L, 651L, 652L, 653L, 654L, 655L, 656L, 657L,
658L, 659L, 660L, 661L, 662L, 663L, 664L, 665L, 666L, 667L, 668L,
669L, 670L, 671L, 672L, 673L, 674L, 675L, 676L, 677L, 678L, 679L,
680L, 681L, 682L, 683L, 684L, 685L, 686L, 687L, 688L, 690L, 691L,
692L, 693L, 694L, 695L, 696L, 698L, 699L, 700L, 701L, 703L, 704L,
705L, 706L, 707L, 708L, 709L, 710L, 711L, 712L, 713L, 714L, 715L,
717L, 718L, 719L, 720L, 721L, 722L, 723L, 724L, 725L, 726L, 727L,
728L, 729L, 730L, 731L, 732L, 733L, 734L, 735L, 736L, 737L, 738L,
739L, 740L, 741L, 742L, 743L, 744L, 745L, 746L, 747L, 748L, 749L,
750L, 751L, 752L, 753L, 755L, 756L, 757L, 758L, 759L, 760L, 761L,
762L, 763L, 764L, 765L, 766L, 767L, 768L, 769L, 770L, 771L, 772L,
773L, 774L, 775L, 776L, 777L, 778L, 779L, 780L, 781L, 782L, 783L,
784L, 785L, 786L, 787L, 788L, 789L, 790L, 791L, 792L, 793L, 794L,
795L, 796L, 797L, 798L, 799L, 800L, 801L, 802L, 803L, 804L, 806L,
808L, 809L, 810L, 811L, 812L, 813L, 814L, 815L, 816L, 817L, 818L,
819L, 820L, 821L, 822L, 823L, 824L, 825L, 826L, 827L, 828L, 829L,
830L, 831L, 832L, 833L, 834L, 835L, 836L, 837L, 838L, 839L, 841L,
842L, 843L, 844L, 845L, 846L, 847L, 848L, 849L, 850L, 851L, 852L,
853L, 854L, 855L, 856L, 857L, 858L, 859L, 860L, 861L, 862L, 863L,
864L, 865L, 866L, 867L, 869L, 870L, 871L, 873L, 874L, 875L, 876L,
877L), class = "data.frame", na.action = structure(c(`34` = 34L,
`41` = 41L, `42` = 42L, `70` = 70L, `75` = 75L, `83` = 83L, `131` = 131L,
`140` = 140L, `150` = 150L, `161` = 161L, `173` = 173L, `176` = 176L,
`178` = 178L, `183` = 183L, `185` = 185L, `193` = 193L, `213` = 213L,
`226` = 226L, `255` = 255L, `270` = 270L, `279` = 279L, `306` = 306L,
`307` = 307L, `323` = 323L, `324` = 324L, `349` = 349L, `356` = 356L,
`359` = 359L, `362` = 362L, `365` = 365L, `384` = 384L, `389` = 389L,
`413` = 413L, `426` = 426L, `452` = 452L, `454` = 454L, `459` = 459L,
`481` = 481L, `494` = 494L, `545` = 545L, `637` = 637L, `638` = 638L,
`639` = 639L, `640` = 640L, `644` = 644L, `689` = 689L, `697` = 697L,
`702` = 702L, `716` = 716L, `754` = 754L, `805` = 805L, `807` = 807L,
`840` = 840L, `868` = 868L, `872` = 872L), class = "omit"))