我正在尝试使用 KITTI 开放数据集进行深度单目视觉里程计我尝试使用这个repo
它使用此代码将姿势转换为 6DoF
def get6DoFPose(self, p):
pos = np.array([p[3], p[7], p[11]])
R = np.array([[p[0], p[1], p[2]], [p[4], p[5], p[6]], [p[8], p[9], p[10]]])
angles = self.rotationMatrixToEulerAngles(R)
return np.concatenate((pos, angles))
def isRotationMatrix(self, R):
Rt = np.transpose(R)
shouldBeIdentity = np.dot(Rt, R)
I = np.identity(3, dtype=R.dtype)
n = np.linalg.norm(I - shouldBeIdentity)
return n < 1e-6
def rotationMatrixToEulerAngles(self, R):
assert (self.isRotationMatrix(R))
sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])
singular = sy < 1e-6
if not singular:
x = math.atan2(R[2, 1], R[2, 2])
y = math.atan2(-R[2, 0], sy)
z = math.atan2(R[1, 0], R[0, 0])
else:
x = math.atan2(-R[1, 2], R[1, 1])
y = math.atan2(-R[2, 0], sy)
z = 0
return np.array([x, y, z], dtype=np.float32)
模型输出也采用相同的格式(6DoF)
问题是如何评估 6DoF 结果,因为此评估工具 ( kitti-odom-eval ) 仅支持以下两种格式
# First format: skipping frames are allowed
99 T00 T01 T02 T03 T10 T11 T12 T13 T20 T21 T22 T23
# Second format: all poses should be included in the file
T00 T01 T02 T03 T10 T11 T12 T13 T20 T21 T22 T23