我不得不用 JavaScript 编写一个面部识别程序,为此我使用了 opencv4nodejs API,因为没有很多工作示例;现在我想以某种方式记录和保存流(用于保存在客户端或上传到服务器)以及音频。这就是我卡住的地方。任何帮助表示赞赏。简而言之,我需要将网络摄像头输入用于多种用途,一种用于面部识别,另一种用于以某种方式保存,后者是我无法做到的。同样在最坏的情况下,如果无法录制和保存网络摄像头视频,我还可以保存完整的屏幕录制,如果有解决方法,请回答。
以下是我尝试做的事情,但由于明显的原因它不起作用。
$(document).ready(function () {
run1()
})
let chunks = []
// run1() for uploading model and for facecam
async function run1() {
const MODELS = "/models";
await faceapi.loadSsdMobilenetv1Model(MODELS)
await faceapi.loadFaceLandmarkModel(MODELS)
await faceapi.loadFaceRecognitionModel(MODELS)
var _stream
//Accessing the user webcam
const videoEl = document.getElementById('inputVideo')
navigator.mediaDevices.getUserMedia({
video: true,
audio: true
}).then(
(stream) => {
_stream = stream
recorder = new MediaRecorder(_stream);
recorder.ondataavailable = (e) => {
chunks.push(e.data);
console.log(chunks, i);
if (i == 20) makeLink(); //Trying to make Link from the blob for some i==20
};
videoEl.srcObject = stream
},
(err) => {
console.error(err)
}
)
}
// run2() main recognition code and training
async function run2() {
// wait for the results of mtcnn ,
const input = document.getElementById('inputVideo')
const mtcnnResults = await faceapi.ssdMobilenetv1(input)
// Detect All the faces in the webcam
const fullFaceDescriptions = await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceDescriptors()
// Training the algorithm with given data of the Current Student
const labeledFaceDescriptors = await Promise.all(
CurrentStudent.map(
async function (label) {
// Training the Algorithm with the current students
for (let i = 1; i <= 10; i++) {
// console.log(label);
const imgUrl = `http://localhost:5500/StudentData/${label}/${i}.jpg`
const img = await faceapi.fetchImage(imgUrl)
// detect the face with the highest score in the image and compute it's landmarks and face descriptor
const fullFaceDescription = await faceapi.detectSingleFace(img).withFaceLandmarks().withFaceDescriptor()
if (!fullFaceDescription) {
throw new Error(`no faces detected for ${label}`)
}
const faceDescriptors = [fullFaceDescription.descriptor]
return new faceapi.LabeledFaceDescriptors(label, faceDescriptors)
}
}
)
)
const maxDescriptorDistance = 0.65
const faceMatcher = new faceapi.FaceMatcher(labeledFaceDescriptors, maxDescriptorDistance)
const results = fullFaceDescriptions.map(fd => faceMatcher.findBestMatch(fd.descriptor))
i++;
}
// I somehow want this to work
function makeLink() {
alert("ML")
console.log("IN MAKE LINK");
let blob = new Blob(chunks, {
type: media.type
}),
url = URL.createObjectURL(blob),
li = document.createElement('li'),
mt = document.createElement(media.tag),
hf = document.createElement('a');
mt.controls = true;
mt.src = url;
hf.href = url;
hf.download = `${counter++}${media.ext}`;
hf.innerHTML = `donwload ${hf.download}`;
li.appendChild(mt);
li.appendChild(hf);
ul.appendChild(li);
}
// onPlay(video) function
async function onPlay(videoEl) {
run2()
setTimeout(() => onPlay(videoEl), 50)
}