如果我有多个特征,但有些特征是分类的,有些不是,那么使用 sklearn 进行回归的正确方法是什么?
我正在尝试“ColumnTransformer”,但我不确定我做得是否好:
features = df[['grad', 'oblast', 'tip',
'parcela', 'bruto', 'neto', 'osnova',
'neto/bruto', 'zauzetost', 'sipovi', 'garaza',
'nadzemno', 'podzemno', 'tavanica', 'fasada']]
results = df[['ukupno gradjevinski din']]
trans = ColumnTransformer(transformers=[('onehot', OneHotEncoder(), ['grad', 'oblast', 'tip', 'garaza', 'tavanica', 'fasada']),
('normalizer', Normalizer(), ['parcela', 'bruto', 'neto', 'osnova', 'neto/bruto', 'zauzetost', 'nadzemno'])],
remainder='passthrough') # Default is to drop untransformed columns
features = trans.fit_transform(features)
当我为某些功能打印 corr() 时,我发现它们与结果之间存在很大的相关性:
print(df[['parcela', 'bruto', 'neto', 'osnova', 'ukupno gradjevinski din']].corr().to_string())
parcela bruto neto osnova ukupno gradjevinski din
parcela 1.000000 0.929939 0.930039 0.987574 0.911690
bruto 0.929939 1.000000 0.998390 0.943996 0.878914
neto 0.930039 0.998390 1.000000 0.946102 0.889850
osnova 0.987574 0.943996 0.946102 1.000000 0.937064
ukupno gradjevinski din 0.911690 0.878914 0.889850 0.937064 1.000000
问题是我已经堆叠了 7-8 个回归模型并且我正在用 评估它们cross-validation,但我得到的分数从 -10 到 -80,这对我来说不正常。
regressors = [
["Bagging Regressor TREE", BaggingRegressor(base_estimator = DecisionTreeRegressor(max_depth=15))],
["Bagging Regressor FOREST", BaggingRegressor(base_estimator = RandomForestRegressor(n_estimators = 100))],
["Bagging Regressor linear", BaggingRegressor(base_estimator = LinearRegression(normalize=True))],
["Bagging Regressor lasso", BaggingRegressor(base_estimator = Lasso(normalize=True))],
["Bagging Regressor SVR rbf", BaggingRegressor(base_estimator = SVR(kernel = 'rbf', C=10.0, gamma='scale'))],
["Extra Trees Regressor", ExtraTreesRegressor(n_estimators = 150)],
["K-Neighbors Regressor", KNeighborsRegressor(n_neighbors=1)]]
for reg in regressors:
scores = cross_val_score(reg[1], features, results, cv=5, scoring='r2')
scores = np.average(scores)
print(reg[0], scores)
每次谈到“Bagging Regressor linear”时,它都会给我一个错误:
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
即使我只使用您在 corr() 中看到的特征运行回归模型,我也会得到相同的结果。
你能告诉我更多关于我遇到的问题吗?