1

说明问题的代码示例:

from ray import tune


def objective(step, alpha, beta):
    return (0.1 + alpha * step / 100)**(-1) + beta * 0.1


def training_function(config):
    # Hyperparameters
    alpha, beta = config["alpha"], config["beta"]
    for step in range(10):
        # Iterative training function - can be any arbitrary training procedure.
        intermediate_score = objective(step, alpha, beta)
        # Feed the score back back to Tune.
        tune.report(mean_loss=intermediate_score)


analysis = tune.run(
    training_function,
    config={
        "alpha": tune.grid_search([0.001, 0.01, 0.1]),
        "beta": tune.choice(list(range(10000)))
    },
    num_samples=1000000)

我面临的问题是,在开始执行第一次试验之前,tune.run调用将强制采样搜索空间时间。num_samples

问题:是否可以在每次试用后制作 Tune 样本搜索空间?

可以使用wrapper around search algorithm来限制tune.suggest.Searcher-descendant 算法(AxSearch例如)的并发试验次数。ConcurrencyLimiter但是我怎样才能为随机搜索做到这一点?

4

0 回答 0