0

这是我的 script.js:

$(document).ready(function(){
    start()
})

const mtcnnParams = {
    // number of scaled versions of the input image passed through the CNN
    // of the first stage, lower numbers will result in lower inference time,
    // but will also be less accurate
    maxNumScales: 10,
    // scale factor used to calculate the scale steps of the image
    // pyramid used in stage 1
    scaleFactor: 0.709,
    // the score threshold values used to filter the bounding
    // boxes of stage 1, 2 and 3
    scoreThresholds: [0.6, 0.7, 0.7],
    // mininum face size to expect, the higher the faster processing will be,
    // but smaller faces won't be detected
    minFaceSize: 20
  }

async function start() {
    // load the models
    await faceapi.loadMtcnnModel('/models')
    await faceapi.loadFaceRecognitionModel('/models')

    const videoEl = document.getElementById('inputVideo')
    navigator.getUserMedia(
      { video: {} },
      stream => videoEl.srcObject = stream,
      err => console.error(err)
    )

    const mtcnnResults = await faceapi.mtcnn(document.getElementById('inputVideo'), mtcnnForwardParams)

//   faceapi.drawDetection('overlay', mtcnnResults.map(res => res.faceDetection), { withScore: false })
//   faceapi.drawLandmarks('overlay', mtcnnResults.map(res => res.faceLandmarks), { lineWidth: 4, color: 'red' })

  const options = new faceapi.MtcnnOptions(mtcnnParams)
  const input = document.getElementById('inputVideo')
  const fullFaceDescriptions = await faceapi.detectAllFaces(input, options).withFaceLandmarks().withFaceDescriptors()
        
        const labels = ['arif']
        const labeledFaceDescriptors = await Promise.all(
            labels.map(async label=>{
                const img = await faceapi.fetchImage(
                    'https://github.com/ahmedarifhasan/adasd/blob/master/Test.jpg'
                ) 
                const fullFaceDescription = await faceapi.detectAllFaces(img).withFaceLandmarks().withFaceDescriptors()
                if (!fullFaceDescription) {
                    throw new Error(`no faces detected for ${label}`)
                  }
                  return new faceapi.LabeledFaceDescriptors(label , fullFaceDescription)
            })
        )
        const maxDescriptorDistance = 0.6
const faceMatcher = new faceapi.FaceMatcher(labeledFaceDescriptors, maxDescriptorDistance)

const results = fullFaceDescription.map(fd => faceMatcher.findBestMatch(fd.descriptor))
results.forEach((bestMatch, i) => {
    const box = fullFaceDescriptions[i].detection.box
    const text = bestMatch.toString()
    const drawBox = new faceapi.draw.DrawBox(box, { label: text })
    drawBox.draw(canvas)
  })
        
  }

  
  async function onPlay(videoEl){
    start()
    setTimeout(()=>onPlay(videoEl))
  }
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  const mtcnnForwardParams = {
    // number of scaled versions of the input image passed through the CNN
    // of the first stage, lower numbers will result in lower inference time,
    // but will also be less accurate
    maxNumScales: 10,
    // scale factor used to calculate the scale steps of the image
    // pyramid used in stage 1
    scaleFactor: 0.709,
    // the score threshold values used to filter the bounding
    // boxes of stage 1, 2 and 3
    scoreThresholds: [0.6, 0.7, 0.7],
    // mininum face size to expect, the higher the faster processing will be,
    // but smaller faces won't be detected
    minFaceSize: 20
  }

这是我的 index.html:

<!DOCTYPE html>

<head>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <title></title>
    <link rel="stylesheet" href="">
    <script defer src="face-api.min.js"></script>
    <script defer src="script.js"></script>
    <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
    <style>
        body{
            margin:0;
            padding:0;
            widows: 100vw;
            height: 100vh;
            display : flex;
            justify-content: center;
            align-items: center;
            flex-direction: column;
        }
        canvas{
            position: absolute;
        }
    </style>
</head>

<body>
    <div style="position: relative;" class="margin">
        <video onplay="onPlay(this)" id="inputVideo" autoplay muted></video>
        <canvas id="overlay" />
    </div>

    <div>
        <p>Hello</p>
    </div>
    
</body>


</html>

我是新手,我需要识别网络摄像头中的人脸。任何帮助都非常感谢。

另外,我认为 face-api.js 比其他包要难一些,所以请在回答时保持礼貌。我已将图片上传到 Github 并使用该链接进行识别。

尝试做类似的事情:https ://itnext.io/realtime-javascript-face-tracking-and-face-recognition-using-face-api-js-mtcnn-face-detector-d924dd8b5740

4

0 回答 0