您可以使用您的输入和输出的.window()
方法。tf.data.Dataset()
.zip()
import tensorflow as tf
import numpy as np
x_train = np.random.rand(1000, 5)
y_train = np.sum(x_train, axis=1)
x = tf.data.Dataset.from_tensor_slices(x_train).\
window(size=3, shift=1, stride=1, drop_remainder=True).\
flat_map(lambda l: l.batch(3))
y = tf.data.Dataset.from_tensor_slices(y_train)
ds = tf.data.Dataset.zip((x, y)).batch(2, drop_remainder=True)
for xx, yy in ds:
print(xx, yy)
break
tf.Tensor(
[[[0.85339111 0.00937855 0.6432005 0.31875691 0.83835893]
[0.91914805 0.13469408 0.40381527 0.80296816 0.4389627 ]
[0.40326491 0.28575999 0.86602507 0.40515333 0.35390637]]
[[0.91914805 0.13469408 0.40381527 0.80296816 0.4389627 ]
[0.40326491 0.28575999 0.86602507 0.40515333 0.35390637]
[0.00197349 0.46558597 0.66426367 0.00787106 0.07879078]]], shape=(2, 3, 5),
dtype=float64) tf.Tensor([2.663086 2.69958826], shape=(2,), dtype=float64)
这是 5 个特征的 3 个时间步长的 2 个张量及其各自的目标。