我特别为如何处理未知数量的盒子(箱子)而苦苦挣扎。
你可以为盒子的数量设置一个上限:对于 N 个不可分割的元素,你永远不需要超过 N 个盒子。此外,我们可以定义一种特殊的“未使用”类型的盒子,其大小为 0,但成本为 0。然后我们可以要求一个解决方案,将项目分配到恰好N 个(或任何其他数量的)盒子,其中一些可以保持未使用。
下面是对单个盒子的描述,使用析取约束和合取约束将其种类、大小和成本联系起来:
kind_width_length_cost(Kind, Width, Length, Cost) :-
% unused box
(Kind #= 0 #/\ Width #= 0 #/\ Length #= 0 #/\ Cost #= 0) #\/
% small box
(Kind #= 1 #/\ Width #= 4 #/\ Length #= 4 #/\ Cost #= 4) #\/
% medium box
(Kind #= 2 #/\ Width #= 4 #/\ Length #= 6 #/\ Cost #= 6) #\/
% large box
(Kind #= 3 #/\ Width #= 5 #/\ Length #= 5 #/\ Cost #= 7) #\/
% X-large box
(Kind #= 4 #/\ Width #= 9 #/\ Length #= 9 #/\ Cost #= 9),
% make sure all variables have finite domains, the above disjunction is
% not enough for the system to infer this
Kind in 0..4,
Width in 0..9,
Length in 0..9,
Cost in 0..9.
N 个盒子的集合可以表示为一个术语boxes(Numbers, Kinds, Widths, Lengths, Costs)
,其中每个其他列表Numbers
的[1, 2, ..., N]
第I
- 个元素是盒子编号的长度/宽度/成本I
:
n_boxes(N, boxes(Numbers, Kinds, Widths, Lengths, Costs)) :-
numlist(1, N, Numbers),
length(Kinds, N),
maplist(kind_width_length_cost, Kinds, Widths, Lengths, Costs).
例如,三个框是:
?- n_boxes(3, Boxes).
Boxes = boxes([1, 2, 3], [_G9202, _G9205, _G9208], [_G9211, _G9214, _G9217], [_G9220, _G9223, _G9226], [_G9229, _G9232, _G9235]),
_G9202 in 0..4,
_G9202#=4#<==>_G9257,
_G9202#=3#<==>_G9269,
_G9202#=2#<==>_G9281,
_G9202#=1#<==>_G9293,
_G9202#=0#<==>_G9305,
... a lot more constraints
请注意,这使用包含列表的术语,而不是使用包含术语的列表的更“通常”的表示box(Num, Width, Length, Cost)
。这样做的原因是我们希望使用element/3
. 此谓词不能用于索引其他术语的列表。
谈到产品,这里是你的析取product_either_way
谓词的 FD 版本:
product_either_way_fd(Number, Width, Length) :-
product_width_length(Number, W, L),
(Width #= W #/\ Length #= L) #\/ (Width #= L #/\ Length #= W),
% make sure Width and Length have finite domains
Width #>= min(W, L),
Width #=< max(W, L),
Length #>= min(W, L),
Length #=< max(W, L).
一个项目的放置用一个box_x_y_w_l
包含框的编号、框内的 X 和 Y 坐标以及项目的宽度和长度的术语来表示。放置必须与所选框的尺寸兼容:
product_placement(Widths, Lengths, Number, Placement) :-
product_either_way_fd(Number, W, L),
Placement = box_x_y_w_l(_Box, _X, _Y, W, L),
placement(Widths, Lengths, Placement).
placement(Widths, Lengths, box_x_y_w_l(Box, X, Y, W, L)) :-
X #>= 0,
X + W #=< Width,
Y #>= 0,
Y + L #=< Length,
element(Box, Widths, Width),
element(Box, Lengths, Length).
这是我们使用 FD 变量的Widths
和Lengths
列表的地方。所选框的编号本身就是一个 FD 变量,我们使用它作为索引来使用element/3
约束查找框的宽度和长度。
现在我们必须对不重叠的展示位置进行建模。放置在不同盒子中的两个项目自动不重叠。对于同一个盒子里的两个项目,我们必须检查它们的坐标和大小。此二元关系必须应用于所有无序项对:
placement_disjoint(box_x_y_w_l(Box1, X1, Y1, W1, L1),
box_x_y_w_l(Box2, X2, Y2, W2, L2)) :-
Box1 #\= Box2 #\/
(Box1 #= Box2 #/\
(X1 #>= X2 + W2 #\/ X1 + W1 #< X2) #/\
(Y1 #>= Y2 + L2 #\/ Y1 + L1 #< Y2)).
alldisjoint([]).
alldisjoint([Placement | Placements]) :-
maplist(placement_disjoint(Placement), Placements),
alldisjoint(Placements).
现在我们准备好将所有东西放在一起。给定一个产品列表和 N 个盒子(其中一些可能未使用),以下谓词计算盒子中放置的约束、使用的盒子的种类、它们的成本和总成本:
placements_(Products, N, Placements, BoxKinds, Costs, Cost) :-
n_boxes(N, boxes(_BoxNumbers, BoxKinds, Widths, Lengths, Costs)),
maplist(product_placement(Widths, Lengths), Products, Placements),
alldisjoint(Placements),
sum(Costs, #=, Cost).
这构造了一个表示 N 个盒子的术语,计算每个产品的放置约束,确保放置不相交,并设置总成本的计算。就这些!
我正在使用从问题中复制的以下产品。请注意,我已删除具有交换宽度/长度的重复项,因为此交换是product_either_way_fd
在需要时完成的。
product_width_length(1, 2, 2).
product_width_length(2, 1, 2).
product_width_length(3, 1, 3).
product_width_length(4, 3, 3).
product_width_length(5, 2, 3).
product_width_length(6, 4, 2).
我们已准备好进行测试。要重现将项目 2、1、3 和 5 放在一个盒子中的示例:
?- placements_([2, 1, 3, 5], 1, Placements, Kinds, Costs, Cost).
Placements = [box_x_y_w_l(1, _G17524, _G17525, _G17526, _G17527), box_x_y_w_l(1, _G17533, _G17534, 2, 2), box_x_y_w_l(1, _G17542, _G17543, _G17544, _G17545), box_x_y_w_l(1, _G17551, _G17552, _G17553, _G17554)],
Kinds = [_G17562],
Costs = [Cost],
_G17524 in 0..8,
_G17524+_G17526#=_G17599,
_G17524+_G17526#=_G17611,
_G17524+_G17526#=_G17623,
...
带标签:
?- placements_([2, 1, 3, 5], 1, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), labeling([], Variables).
Placements = [box_x_y_w_l(1, 0, 0, 1, 2), box_x_y_w_l(1, 7, 7, 2, 2), box_x_y_w_l(1, 4, 6, 3, 1), box_x_y_w_l(1, 2, 3, 2, 3)],
Kinds = [4],
Costs = [9],
Cost = 9,
Variables = [0, 0, 1, 2, 7, 7, 4, 6, 3|...] .
(您可能需要仔细检查它的正确性!)所有东西都放在 1 号盒子里,它是种类 4(尺寸 9x9),成本 9。
有没有办法把这些物品装进一个更便宜的盒子里?
?- Cost #< 9, placements_([2, 1, 3, 5], 1, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), labeling([], Variables).
false.
现在,将所有产品放入(最多)6 个盒子中怎么样?
?- placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), labeling([], Variables).
Placements = [box_x_y_w_l(1, 0, 0, 2, 2), box_x_y_w_l(1, 3, 3, 1, 2), box_x_y_w_l(1, 5, 6, 1, 3), box_x_y_w_l(2, 0, 0, 3, 3), box_x_y_w_l(2, 4, 4, 2, 3), box_x_y_w_l(3, 0, 0, 2, 4)],
Kinds = [4, 4, 1, 0, 0, 0],
Costs = [9, 9, 4, 0, 0, 0],
Cost = 22,
Variables = [1, 0, 0, 1, 3, 3, 1, 2, 1|...] .
找到的第一个解决方案使用三个盒子,而其他三个未使用。我们能便宜点吗?
?- Cost #< 22, placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), labeling([], Variables).
Cost = 21,
Placements = [box_x_y_w_l(1, 0, 0, 2, 2), box_x_y_w_l(1, 3, 3, 1, 2), box_x_y_w_l(1, 5, 6, 1, 3), box_x_y_w_l(2, 0, 0, 3, 3), box_x_y_w_l(3, 0, 0, 2, 3), box_x_y_w_l(4, 0, 0, 2, 4)],
Kinds = [4, 1, 1, 1, 0, 0],
Costs = [9, 4, 4, 4, 0, 0],
Variables = [1, 0, 0, 1, 3, 3, 1, 2, 1|...] .
是的!该解决方案使用更多的盒子,但总体上稍微便宜一些。我们还能做得更好吗?
?- Cost #< 21, placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), labeling([], Variables).
% ... takes far too long
我们需要更复杂一点。玩弄盒子的数量,很明显可以使用更少的盒子更便宜的解决方案:
?- Cost #< 21, placements_([1, 2, 3, 4, 5, 6], 2, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), labeling([], Variables).
Cost = 18,
Placements = [box_x_y_w_l(1, 0, 0, 2, 2), box_x_y_w_l(1, 3, 3, 1, 2), box_x_y_w_l(1, 5, 6, 1, 3), box_x_y_w_l(2, 0, 6, 3, 3), box_x_y_w_l(2, 6, 4, 3, 2), box_x_y_w_l(2, 4, 0, 2, 4)],
Kinds = [4, 4],
Costs = [9, 9],
Variables = [1, 0, 0, 1, 3, 3, 1, 2, 1|...] .
也许首先将搜索定向到标签框类型是有用的,因为该up
策略基本上会尝试使用尽可能少的框:
?- Cost #< 21, placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), time(( labeling([], Kinds), labeling([ff], Variables) )).
% 35,031,786 inferences, 2.585 CPU in 2.585 seconds (100% CPU, 13550491 Lips)
Cost = 15,
Placements = [box_x_y_w_l(5, 2, 4, 2, 2), box_x_y_w_l(6, 8, 7, 1, 2), box_x_y_w_l(6, 5, 6, 3, 1), box_x_y_w_l(6, 2, 3, 3, 3), box_x_y_w_l(6, 0, 0, 2, 3), box_x_y_w_l(5, 0, 0, 2, 4)],
Kinds = [0, 0, 0, 0, 2, 4],
Costs = [0, 0, 0, 0, 6, 9],
Variables = [5, 2, 4, 6, 8, 7, 1, 2, 6|...] .
这确实需要ff
or ffc
,默认leftmost
策略不会在合理的时间范围内返回结果。
我们还能做得更好吗?
?- Cost #< 15, placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), time(( labeling([], Kinds), labeling([ff], Variables) )).
% 946,355,675 inferences, 69.984 CPU in 69.981 seconds (100% CPU, 13522408 Lips)
false.
不!成本为 15 的解决方案是最优的(但不是唯一的)。
但是,对于这个非常小的问题,我发现 70 秒太慢了。有一些我们可以利用的对称性吗?考虑:
?- Cost #= 15, placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), time(( labeling([], Kinds), labeling([ff], Variables) )).
% 8,651,030 inferences, 0.611 CPU in 0.611 seconds (100% CPU, 14163879 Lips)
Cost = 15,
Placements = [box_x_y_w_l(5, 2, 4, 2, 2), box_x_y_w_l(6, 8, 7, 1, 2), box_x_y_w_l(6, 5, 6, 3, 1), box_x_y_w_l(6, 2, 3, 3, 3), box_x_y_w_l(6, 0, 0, 2, 3), box_x_y_w_l(5, 0, 0, 2, 4)],
Kinds = [0, 0, 0, 0, 2, 4],
Costs = [0, 0, 0, 0, 6, 9],
Variables = [5, 2, 4, 6, 8, 7, 1, 2, 6|...] .
?- Kinds = [4, 2, 0, 0, 0, 0], Cost #= 15, placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), time(( labeling([], Kinds), labeling([ff], Variables) )).
% 11,182,689 inferences, 0.790 CPU in 0.790 seconds (100% CPU, 14153341 Lips)
Kinds = [4, 2, 0, 0, 0, 0],
Cost = 15,
Placements = [box_x_y_w_l(1, 7, 7, 2, 2), box_x_y_w_l(1, 6, 5, 1, 2), box_x_y_w_l(2, 3, 3, 1, 3), box_x_y_w_l(2, 0, 0, 3, 3), box_x_y_w_l(1, 4, 2, 2, 3), box_x_y_w_l(1, 0, 0, 4, 2)],
Costs = [9, 6, 0, 0, 0, 0],
Variables = [1, 7, 7, 1, 6, 5, 1, 2, 2|...] .
这些不是相同解决方案的排列,但它们是相同框的排列,因此具有相同的成本。我们不需要考虑他们两个!除了Kinds
比一开始更智能地标记之外,我们还可以要求Kinds
列表单调递增。这排除了许多冗余解决方案并提供了更快的终止,甚至首先使用更好的解决方案:
?- placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), chain(Kinds, #=<), time(( labeling([], Kinds), labeling([ff], Variables) )).
% 34,943,765 inferences, 2.865 CPU in 2.865 seconds (100% CPU, 12195550 Lips)
Placements = [box_x_y_w_l(5, 2, 4, 2, 2), box_x_y_w_l(6, 8, 7, 1, 2), box_x_y_w_l(6, 5, 6, 3, 1), box_x_y_w_l(6, 2, 3, 3, 3), box_x_y_w_l(6, 0, 0, 2, 3), box_x_y_w_l(5, 0, 0, 2, 4)],
Kinds = [0, 0, 0, 0, 2, 4],
Costs = [0, 0, 0, 0, 6, 9],
Cost = 15,
Variables = [5, 2, 4, 6, 8, 7, 1, 2, 6|...] .
?- Cost #< 15, placements_([1, 2, 3, 4, 5, 6], 6, Placements, Kinds, Costs, Cost), term_variables(Placements, Variables, [Cost | Costs]), chain(Kinds, #=<), time(( labeling([], Kinds), labeling([ff], Variables) )).
% 31,360,608 inferences, 2.309 CPU in 2.309 seconds (100% CPU, 13581762 Lips)
false.
对于更大的问题规模,更多的调整是可能的,并且可能是必要的。我发现添加bisect
最终标签会有所帮助。删除 中的逻辑冗余Box1 #= Box2
约束也是如此placement_disjoint/2
。最后,考虑到chain/2
to restrict的使用Kinds
,我们可以完全删除 的初步标签Kinds
以获得很好的加速!我敢肯定还有更多,但对于原型,我认为它足够合理。
感谢您提出这个有趣的问题!