您可以通过mplcursors创建十字光标。sel.extras.append()
注意在绘制新光标时删除旧光标。sel.annotation.set_text
您可以调整显示的弹出注释。要省略注释,请使用sel.annotation.set_visible(False)
. 要在另一个子图中找到相应的 y 值,np.interp
可以使用从曲线中提取的数据。
import numpy as np
import matplotlib.pyplot as plt
import mplcursors
def crosshair(sel):
x, y2 = sel.target
y1 = np.interp( sel.target[0], plot1.get_xdata(), plot1.get_ydata() )
sel.annotation.set_text(f'x: {x:.2f}\ny1: {y1:.2f}\ny2: {y2:.2f}')
# sel.annotation.set_visible(False)
hline1 = ax1.axhline(y1, color='k', ls=':')
vline1 = ax1.axvline(x, color='k', ls=':')
vline2 = ax2.axvline(x, color='k', ls=':')
hline2 = ax2.axhline(y2, color='k', ls=':')
sel.extras.append(hline1)
sel.extras.append(vline1)
sel.extras.append(hline2)
sel.extras.append(vline2)
fig = plt.figure(figsize=(15, 10))
ax1 = plt.subplot(2, 1, 1)
ax2 = plt.subplot(2, 1, 2, sharex=ax1)
plot1, = ax1.plot(np.array(np.random.uniform(-1, 1, 100).cumsum()))
plot2, = ax2.plot(np.array(np.random.uniform(-1, 1, 100).cumsum()))
cursor = mplcursors.cursor(plot2, hover=True)
cursor.connect('add', crosshair)
plt.show()

这是另一种实现,它将数据存储在全局变量中并移动行(而不是删除和重新创建它们):
import numpy as np
import matplotlib.pyplot as plt
import mplcursors
def crosshair(sel):
x = sel.target[0]
y1 = np.interp(x, plot1x, plot1y)
y2 = np.interp(x, plot2x, plot2y)
sel.annotation.set_visible(False)
hline1.set_ydata([y1])
vline1.set_xdata([x])
hline2.set_ydata([y2])
vline2.set_xdata([x])
hline1.set_visible(True)
vline1.set_visible(True)
hline2.set_visible(True)
vline2.set_visible(True)
fig = plt.figure(figsize=(15, 10))
ax1 = plt.subplot(2, 1, 1)
ax2 = plt.subplot(2, 1, 2, sharex=ax1)
plot1, = ax1.plot(np.array(np.random.uniform(-1, 1, 100).cumsum()))
plot2, = ax2.plot(np.array(np.random.uniform(-1, 1, 100).cumsum()))
plot1x = plot1.get_xdata()
plot1y = plot1.get_ydata()
plot2x = plot2.get_xdata()
plot2y = plot2.get_ydata()
hline1 = ax1.axhline(plot1y[0], color='k', ls=':', visible=False)
vline1 = ax1.axvline(plot1x[0], color='k', ls=':', visible=False)
hline2 = ax2.axhline(plot2y[0], color='k', ls=':', visible=False)
vline2 = ax2.axvline(plot2x[0], color='k', ls=':', visible=False)
cursor = mplcursors.cursor([plot1, plot2], hover=True)
cursor.connect('add', crosshair)
plt.show()