我不熟悉您正在使用的 alpha_vantage 包装器,但这就是我将如何执行您的问题。该代码有效,我已包含评论。
要在 python 脚本中获取文件,我会执行 pd.read_excel(filepath)。
import requests
import pandas as pd
import time
import datetime
# Your API KEY and the URL we will request from
API_KEY = "YOUR API KEY"
url = "https://www.alphavantage.co/query?"
def Generate_file(symbol="IBM", interval="1min"):
# URL parameters
parameters = {"function": "TIME_SERIES_INTRADAY",
"symbol": symbol,
"interval": interval,
"apikey": API_KEY,
"outputsize": "compact"}
# get the json response from AlphaVantage
response = requests.get(url, params=parameters)
data = response.json()
# filter the response to only get the time series data we want
time_series_interval = f"Time Series ({interval})"
prices = data[time_series_interval]
# convert the filtered reponse to a Pandas DataFrame
df = pd.DataFrame.from_dict(prices, orient="index").reset_index()
df = df.rename(columns={"index": time_series_interval})
# create a timestampe for our excel file. So that the file does not get overriden with new data each time.
current_time = datetime.datetime.now()
file_timestamp = current_time.strftime("%Y%m%d_%H.%M")
filename = f"livedat_{file_timestamp}.xlsx"
df.to_excel(filename)
# sent a limit on the number of calls we make to prevent infinite loop
call_limit = 3
number_of_calls = 0
while(number_of_calls < call_limit):
Generate_file() # our function
number_of_calls += 1
time.sleep(60)