1

我正在尝试对一些数据运行零膨胀负二项式计数模型,这些数据包含按县划分的政治家的竞选访问次数。(对数似然检验表明负二项式是正确的,Vuong 检验表明零膨胀,尽管这可能会因为我的零膨胀模型显然没有收敛的事实而被抛弃。)我在 R 中使用 pscl 包。问题是当我跑步时

Call:
zeroinfl(formula = Sanders_Adjacent_Clinton_Visit ~ Relative_Divisiveness + Obama_General_Percent_12 + 
    Percent_Over_65 + Percent_F + Percent_White + Percent_HS + Per_Capita_Income + 
    Poverty_Rate + MRP_Ideology_Mean + Swing_State, data = Unity_Data, dist = "negbin")

Pearson residuals:
     Min       1Q   Median       3Q      Max 
-0.96406 -0.24339 -0.11744 -0.03183 16.21356 

Count model coefficients (negbin with log link):
                           Estimate Std. Error z value Pr(>|z|)
(Intercept)              -1.216e+01         NA      NA       NA
Relative_Divisiveness    -3.831e-01         NA      NA       NA
Obama_General_Percent_12  1.904e+00         NA      NA       NA
Percent_Over_65          -4.848e-02         NA      NA       NA
Percent_F                 1.737e-01         NA      NA       NA
Percent_White             2.980e+00         NA      NA       NA
Percent_HS               -3.563e-02         NA      NA       NA
Per_Capita_Income         7.413e-05         NA      NA       NA
Poverty_Rate             -2.273e-02         NA      NA       NA
MRP_Ideology_Mean        -8.316e-01         NA      NA       NA
Swing_State               1.580e+00         NA      NA       NA
Log(theta)                9.595e+00         NA      NA       NA

Zero-inflation model coefficients (binomial with logit link):
                           Estimate Std. Error z value Pr(>|z|)
(Intercept)              -1.024e+02         NA      NA       NA
Relative_Divisiveness    -3.265e+00         NA      NA       NA
Obama_General_Percent_12 -2.300e+01         NA      NA       NA
Percent_Over_65          -7.768e-02         NA      NA       NA
Percent_F                 2.873e+00         NA      NA       NA
Percent_White             5.156e+00         NA      NA       NA
Percent_HS               -5.097e-01         NA      NA       NA
Per_Capita_Income         2.831e-04         NA      NA       NA
Poverty_Rate              1.391e-02         NA      NA       NA
MRP_Ideology_Mean        -2.569e+00         NA      NA       NA
Swing_State               5.075e-01         NA      NA       NA

Theta = 14696.9932 
Number of iterations in BFGS optimization: 94 
Log-likelihood: -596.5 on 23 Df

显然,所有这些 NA 对我的帮助都不大。任何建议将不胜感激!我是 R、StackOverflow 和 Statistics 的新手,但我正在努力学习。我正在尝试提供最小可重现示例所需的一切,但我看不到任何地方可以分享我的实际数据......所以如果你需要这些东西来回答这个问题,请告诉我我可以把它放在哪里!

4

0 回答 0