我使用 MATLAB 附加了几个不同的剩余引导程序示例
以下参考资料提供了一些很好的背景信息
http://www.economics.uci.edu/~dbrownst/bootmi.pdf
%% Generate a data set and perform your initial regression
clear all
clc
X = linspace(1, 1000, 1000)';
Y = 3*X + 5 + randn(1000,1);
X = [ones(length(X),1), X];
[b,bint,r,rint,stats] = regress(Y,X);
%% Parametric residual bootstrap
% This method assumes that your residuals are normally distributed and
% homoskedastic. A parametric residual bootstrap is more accurate and
% converges faster than a nonparametric residual bootstrap.
% Use a one sided kstest to verify that the residuals are normally
% distributed.
kstest(r)
% Create a probability distribution object that models the residuals
foo = fitdist(r, 'normal')
% Create an array to store your new datasets
Nboot = 500;
My_Data = zeros(length(X), Nboot);
% Create your data sets
YHat = X*b;
for i = 1:Nboot
boot_noise = random(foo, 1000,1);
My_Data(:,i) = YHat + boot_noise;
end
% Use your data to do something interesting
%% Nonparametric residual bootstrap
% This method assumes that your errors are homoskedastic, however, there is
% no assume that they are normally distributed.
% This method also uses the bootstrp function from Statistics Toolbox and
% assumes that we're using the bootstrp to estimate standard errors
standard_errors = std(bootstrp(1000,@(bootr)regress(YHat+bootr, X),r))