要使用置换计算变量重要性,与使用模型相关变量重要性相比,您只需将几部分放在一起即可。
让我们看一个 SVM 模型的示例,它没有模型相关变量的重要性得分。
library(tidymodels)
#> ── Attaching packages ──────────────────────── tidymodels 0.1.1 ──
#> ✓ broom 0.7.0 ✓ recipes 0.1.13
#> ✓ dials 0.0.8 ✓ rsample 0.0.7
#> ✓ dplyr 1.0.0 ✓ tibble 3.0.3
#> ✓ ggplot2 3.3.2 ✓ tidyr 1.1.0
#> ✓ infer 0.5.3 ✓ tune 0.1.1
#> ✓ modeldata 0.0.2 ✓ workflows 0.1.2
#> ✓ parsnip 0.1.2 ✓ yardstick 0.0.7
#> ✓ purrr 0.3.4
#> ── Conflicts ─────────────────────────── tidymodels_conflicts() ──
#> x purrr::discard() masks scales::discard()
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> x recipes::step() masks stats::step()
data("hpc_data")
svm_spec <- svm_poly(degree = 1, cost = 1/4) %>%
set_engine("kernlab") %>%
set_mode("regression")
svm_fit <- workflow() %>%
add_model(svm_spec) %>%
add_formula(compounds ~ .) %>%
fit(hpc_data)
svm_fit
#> ══ Workflow [trained] ════════════════════════════════════════════
#> Preprocessor: Formula
#> Model: svm_poly()
#>
#> ── Preprocessor ──────────────────────────────────────────────────
#> compounds ~ .
#>
#> ── Model ─────────────────────────────────────────────────────────
#> Support Vector Machine object of class "ksvm"
#>
#> SV type: eps-svr (regression)
#> parameter : epsilon = 0.1 cost C = 0.25
#>
#> Polynomial kernel function.
#> Hyperparameters : degree = 1 scale = 1 offset = 1
#>
#> Number of Support Vectors : 2827
#>
#> Objective Function Value : -284.7255
#> Training error : 0.835421
我们的模型现在已经训练好了,因此可以计算变量的重要性了。注意几个步骤:
- 您
pull()
将拟合的模型对象排除在工作流之外。
- 您必须指定目标/结果变量
compounds
.
- 在这种情况下,我们需要同时传递原始训练数据(在此处使用训练数据,而不是测试数据)和正确的基础函数进行预测(这在某些情况下可能很难弄清楚,但对于大多数包来说只是
predict()
)。
library(vip)
#>
#> Attaching package: 'vip'
#> The following object is masked from 'package:utils':
#>
#> vi
svm_fit %>%
pull_workflow_fit() %>%
vip(method = "permute",
target = "compounds", metric = "rsquared",
pred_wrapper = kernlab::predict, train = hpc_data)
由reprex 包于 2020-07-17 创建(v0.3.0)
您可以nsim
在此处增加以多次执行此操作。