2

我正在尝试使用 BayesSearchCV 来调整 SGDClassifier 的参数。下面是我尝试过的代码。

import seaborn
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from skopt import BayesSearchCV
from sklearn.linear_model import SGDClassifier

df = seaborn.load_dataset("iris")
df_features = df.drop(['species'], axis=1)
df_target = df[['species']]

label_encoder = LabelEncoder()
df_target['species'] = list(label_encoder.fit_transform(df['species'].values.tolist()))

X_train, X_test, y_train, y_test = train_test_split(df_features, df_target, test_size=0.25, random_state=0)

model = SGDClassifier()

model_param = {
    'penalty': ['l2', 'l1', 'elasticnet'],
    'l1_ratio': [0, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 1],
    'loss': ['hinge', 'log', 'modified_huber', 'squared_hinge', 'perceptron', 'squared_loss', 'huber',
             'epsilon_insensitive', 'squared_epsilon_insensitive'],
    'alpha': [10 ** x for x in range(-6, 1)],
    'random_state': [0]
}

opt = BayesSearchCV(model, model_param, n_iter=32, cv=3)
opt.fit(X_train, y_train)
opt_pred_values = opt.predict(X_test)

正在创建以下错误:

ValueError: invalid literal for int() with base 10: '0.8'

我还使用相同的 model_param 列表测试了 GridSearchCV 和 RandomizedSearchCV 并且它们工作正常。如何正确使用 BayesSearchCV?我必须在哪里更改或必须删除哪个参数?

[更新]

如果我从 model_param 中删除“l1_ratio”,那么上面的代码将起作用。如何执行保持'l1_ratio'?

4

1 回答 1

2

经过几次参数组合后,我发现如果我删除“l1_ratio”,那么它就可以工作了。然后我尝试了'l1_ratio',如下所示:

'l1_ratio': [0.0, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 1.0]
'l1_ratio': [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.85, 0.9, 1]
'l1_ratio': [10 ** x for x in range(-1, 1)]
'l1_ratio': [float(x/10) for x in range(1, 10)]

所有人都在工作。所以最后我在“l1_ratio”的搜索空间中将 0 更改为 0.0 和 1 更改为 1.0。

我将解决方案保留在这里以备将来使用。也许有一天有人会受益。

于 2020-06-26T23:27:48.433 回答