给定一个 NxM 特征向量作为 numpy 矩阵。是否有任何例程可以使用 L1 距离(曼哈顿距离)通过 Kmeans 算法对其进行聚类?
问问题
7521 次
4 回答
5
这是一种使用 L1 距离(曼哈顿距离)的 Kmeans 算法。为了一般性,将特征向量表示为一个列表,很容易转换为一个numpy矩阵。
import random
#Manhattan Distance
def L1(v1,v2):
if(len(v1)!=len(v2):
print “error”
return -1
return sum([abs(v1[i]-v2[i]) for i in range(len(v1))])
# kmeans with L1 distance.
# rows refers to the NxM feature vectors
def kcluster(rows,distance=L1,k=4):# Cited from Programming Collective Intelligence
# Determine the minimum and maximum values for each point
ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows])) for i in range(len(rows[0]))]
# Create k randomly placed centroids
clusters=[[random.random( )*(ranges[i][1]-ranges[i][0])+ranges[i][0] for i in range(len(rows[0]))] for j in range(k)]
lastmatches=None
for t in range(100):
print 'Iteration %d' % t
bestmatches=[[] for i in range(k)]
# Find which centroid is the closest for each row
for j in range(len(rows)):
row=rows[j]
bestmatch=0
for i in range(k):
d=distance(clusters[i],row)
if d<distance(clusters[bestmatch],row):
bestmatch=i
bestmatches[bestmatch].append(j)
## If the results are the same as last time, this is complete
if bestmatches==lastmatches:
break
lastmatches=bestmatches
# Move the centroids to the average of their members
for i in range(k):
avgs=[0.0]*len(rows[0])
if len(bestmatches[i])>0:
for rowid in bestmatches[i]:
for m in range(len(rows[rowid])):
avgs[m]+=rows[rowid][m]
for j in range(len(avgs)):
avgs[j]/=len(bestmatches[i])
clusters[i]=avgs
return bestmatches
于 2012-04-14T15:17:35.470 回答
1
我不认为这是在 scipy 中明确提供的,但你应该看看以下内容:
于 2011-06-06T14:48:50.690 回答
1
is-it-possible-to-specify-your-own-distance-function-using-scikits-learn-k-means下有代码 ,它使用 scipy.spatial.distance 中的 20 多个指标中的任何一个。另见 L1-or-L.5-metrics-for-clustering;你能评论一下 L1 与 L2 的结果吗?
于 2011-06-12T09:51:15.490 回答
0
看看pyclustering。在这里,您可以找到可以配置为使用 L1 距离的 k-means 实现。但是您必须将 numpy 数组转换为列表。
如何安装pyclustering
pip3 install pyclustering
从pyclustering复制的代码片段
pip3 install pyclustering
from pyclustering.cluster.kmeans import kmeans, kmeans_visualizer
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
from pyclustering.samples.definitions import FCPS_SAMPLES
from pyclustering.utils import read_sample
sample = read_sample(FCPS_SAMPLES.SAMPLE_TWO_DIAMONDS)
manhattan_metric = distance_metric(type_metric.MANHATTAN)
kmeans_instance = kmeans(sample, initial_centers, metric=manhattan_metric)
kmeans_instance.process()
于 2021-06-06T07:08:02.893 回答