我是python的初学者,希望您能帮我解决我的问题。
我有两个文件 library.csv(9 列)和 case.csv(8 列),我用 np.loadtxt 读取它们。我从库中选择列将它们放入数组 base[] 中,除了最后一列,我将 case.csv 放入数组问题 [] 中。我会计算问题数组中每一行与基本 [] 数组的所有行之间的马氏距离,并将最小距离存储在表中。
这是我的代码:
# Imports
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sn
from keras.models import load_model
from scipy.spatial import distance
# [1] Get the library.csv and cases.scv
library = np.loadtxt("library.csv", delimiter=",")
cases = np.loadtxt("cases.csv", delimiter=",")
problems = np.loadtxt("cases.csv", delimiter=",") #cases copie
# Select columns from library to use as base cases, except solutions
base = library[:, range(library.shape[1] - 1)] # Exclude last column (solution)
# Move through all problem cases
for i in range(problems.shape[0]):
# [3.1] Get inverse covariance matrix for the base cases
covariance_matrix = np.cov(base) # Covariance
inverse_covariance_matrix = np.linalg.pinv(covariance_matrix) # Inverse
# [3.2] Get case row to evaluate
case_row = problems[i, :]
# Empty distances array to store mahalanobis distances obtained comparing each library cases
distances = np.zeros(base.shape[0])
# [3.3] For each base cases rows
for j in range(base.shape[0]):
# Get base case row
base_row = base[j, :]
# [3.4] Calculate mahalanobis distance between case row and base cases, and store it
distances[j] = distance.mahalanobis(case_row, base_row, inverse_covariance_matrix)
# [3.5] Returns the index (row) of the minimum value in distances calculated
min_distance_row = np.argmin(distances)
但我得到这个错误:
使用 TensorFlow 后端。
回溯(最后一次调用):
文件“C:\Users\HP\Desktop\MyAlgo\mainAlgo.py”,第 45 行,
距离 [j] = distance.mahalanobis(case_row, base_row, inverse_covariance_matrix)
文件“C:\ Users\HP\AppData\Local\Programs\Python\Python38\lib\site-packages\scipy\spatial\distance.py",第 1083 行,马哈拉诺比斯
m = np.dot(np.dot(delta, VI), delta )
文件“< array_function internals>”,第 5 行,点
ValueError:形状 (8,) 和 (384,384) 未对齐:8 (dim 0) != 384 (dim 0)