0

我有一个给定的代码,它根据花瓣长度和花瓣宽度告诉您来自 iris 数据集的 Iris 是否是 iris vireginica。但是我如何对一朵全新的花进行预测呢?

%matplotlib inline
import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
iris = datasets.load_iris()

from sklearn.linear_model import LogisticRegression

X = iris["data"][:, (2, 3)]  # petal length, petal width
y = (iris["target"] == 2).astype(np.int)

log_reg = LogisticRegression(C=10**10, random_state=42)
log_reg.fit(X, y)

x0, x1 = np.meshgrid(
        np.linspace(2.9, 7, 500).reshape(-1, 1),
        np.linspace(0.8, 2.7, 200).reshape(-1, 1),
    )
X_new = np.c_[x0.ravel(), x1.ravel()]

y_proba = log_reg.predict_proba(X_new)

plt.figure(figsize=(10, 4))
plt.plot(X[y==0, 0], X[y==0, 1], "bs")
plt.plot(X[y==1, 0], X[y==1, 1], "g^")

zz = y_proba[:, 1].reshape(x0.shape)
contour = plt.contour(x0, x1, zz, cmap=plt.cm.brg)


left_right = np.array([2.9, 7])
boundary = -(log_reg.coef_[0][0] * left_right + log_reg.intercept_[0]) / log_reg.coef_[0][1]

plt.clabel(contour, inline=1, fontsize=12)
plt.plot(left_right, boundary, "k--", linewidth=3)
plt.text(3.5, 1.5, "Not Iris-Virginica", fontsize=14, color="b", ha="center")
plt.text(6.5, 2.3, "Iris-Virginica", fontsize=14, color="g", ha="center")
plt.xlabel("Petal length", fontsize=14)
plt.ylabel("Petal width", fontsize=14)
plt.axis([2.9, 7, 0.8, 2.7])
plt.show()

现在假设我有一朵新花,我测量:

  • 萼片长度:4.8
  • 萼片宽度:2.5
  • 花瓣长度:5.3
  • 花瓣宽度:2.4

当我尝试以下预测时,我收到一条错误消息: ValueError: X has 1 features per sample; 期待 2

log_reg.predict([[5.3], [2.4]])

所以我的问题是,我如何正确地在这里预测一朵新花以及它是什么种类?

4

1 回答 1

1

方法的文档predict说输入参数的形状应该是(n_samples, n_features)1x2,而在你的情况下输入是 2x1。尝试这个:

log_reg.predict([[5.3, 2.4]])
于 2020-06-20T09:08:46.663 回答