我有 3 次试验(试验:e1、e2、e3)、2 个产品/试验(产品:A、B)、5 个费率/产品(.1、1、10、100、1000),总共 6 条曲线(曲线:c1、 ...,c6)。拟合非线性混合模型后,我想在同一张图表中绘制所有曲线和模型产生的曲线。这是参考(github中的medrc包):https ://doseresponse.github.io/medrc/articles/medrc.html
这是生成非线性混合模型的代码。
#packages
library(drc)
library(medrc)
library(dplyr)
library(tidyr)
#my data
trial <- c("e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1",
"e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1","e1",
"e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2",
"e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2","e2",
"e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3",
"e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3","e3")
curve <- c("c1","c1","c1","c1","c1","c1","c1","c1","c1","c1","c1","c1","c1","c1","c1",
"c2","c2","c2","c2","c2","c2","c2","c2","c2","c2","c2","c2","c2","c2","c2",
"c3","c3","c3","c3","c3","c3","c3","c3","c3","c3","c3","c3","c3","c3","c3",
"c4","c4","c4","c4","c4","c4","c4","c4","c4","c4","c4","c4","c4","c4","c4",
"c5","c5","c5","c5","c5","c5","c5","c5","c5","c5","c5","c5","c5","c5","c5",
"c6","c6","c6","c6","c6","c6","c6","c6","c6","c6","c6","c6","c6","c6","c6")
rates <- c(.1,.1,.1,1,1,1,10,10,10,100,100,100,1000,1000,1000,
.1,.1,.1,1,1,1,10,10,10,100,100,100,1000,1000,1000,
.1,.1,.1,1,1,1,10,10,10,100,100,100,1000,1000,1000,
.1,.1,.1,1,1,1,10,10,10,100,100,100,1000,1000,1000,
.1,.1,.1,1,1,1,10,10,10,100,100,100,1000,1000,1000,
.1,.1,.1,1,1,1,10,10,10,100,100,100,1000,1000,1000)
product <- c("A","A","A","A","A","A","A","A","A","A","A","A","A","A","A",
"B","B","B","B","B","B","B","B","B","B","B","B","B","B","B",
"A","A","A","A","A","A","A","A","A","A","A","A","A","A","A",
"B","B","B","B","B","B","B","B","B","B","B","B","B","B","B",
"A","A","A","A","A","A","A","A","A","A","A","A","A","A","A",
"B","B","B","B","B","B","B","B","B","B","B","B","B","B","B")
resp <- c(.295,.3232,.3015,.155,.1501,.1483,.0511,.036,.0445,.0021,.0022,.0035,.0015,.0025,.0009,
.312,.3373,.2994,.265,.2501,.2482,.1022,.103,.1142,.0220,.0198,.0159,.0036,.0099,.0100,
.289,.3122,.3093,.141,.1612,.1398,.0722,.022,.0581,.0019,.0015,.0011,.0018,.0009,.0014,
.325,.3451,.2952,.267,.2412,.2398,.1125,.109,.1019,.0554,.0547,.0118,.0029,.0075,.0078,
.294,.2452,.2991,.121,.1925,.1485,.0871,.025,.0658,.0019,.0019,.0010,.0025,.0019,.0008,
.285,.3412,.3069,.124,.1861,.1958,.1276,.132,.1985,.0325,.0201,.0225,.0031,.0089,.0094)
data.test <- data.frame(trial,curve,rates,product,resp) #my data frame
#my model
m1 <- medrm(resp ~ rates,
curveid=b + c + d + e ~ product,
data = data.test,
fct=LL.4(),
random = c + d ~ 1|trial,
start=NULL)
制作情节:
#plotting
pdata <- data.test%>%
group_by(curve, product) %>%
expand(rates=exp(seq(-3, 10, length=50)))
#pdata$resp_ind <- predict(m1, newdata=pdata)
pdata$resp <- predict(m1, newdata=pdata, level=0)
ggplot(data.test, aes(x=log(rates), y=resp,
colour=product, group=curve, shape=product)) +
geom_point() +
geom_line(data=pdata) +
#geom_line(data=pdata, aes(y=resp_ind), linetype=2) +
theme_bw() +
scale_x_continuous("DOSE",
breaks=log(c(.1, 1, 10, 100, 1000)),
labels=c(.1, 1, 10, 100, 1000))
请注意,有两行代码被注释掉。 在提取每条曲线的预测数据时,我无法指定级别,即给出随机分量的曲线。我错过了什么?
pdata$resp_ind <- predict(m1, newdata=pdata)
导致错误:
Error in predict.nlme(object$fit, newdata = newdata, level = level) :
cannot evaluate groups for desired levels on 'newdata'
所以我不能用这行代码来绘制每条曲线
geom_line(data=pdata, aes(y=resp_ind), linetype=2) +
这些是类似的问题,但我得到了代码的平均趋势:
pdata$resp <- predict(m1, newdata=pdata, level=0)
我想指定级别以获取所有曲线。 R:lme,无法评估“newdata”上所需级别的组 https://stats.stackexchange.com/questions/58031/prediction-on-mixed-effect-models-what-to-do-with-random-effects