有人可以告诉我我在这里做错了什么吗?我正在尝试创建一个使用 cuda 将矩阵返回到幂的程序。似乎 cudaMemcpy (ln103) 没有返回结果数组。我通过返回矩阵中的第一个元素来检查它,但我总是得到 0。也许我的内核有问题?将不胜感激任何帮助:
编辑:我应该澄清一下,内核被迭代(从矩阵乘以各自的单位矩阵开始,然后乘以之后的每个结果)直到 k 次,这使矩阵具有幂。
即A是一个矩阵A^0 = I(单位矩阵)A^k = A^(k-1)*A
输入 :
<n>
<power>
<element>
.....
代码:
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#define BLOCK 8
#define SIZE (BLOCK * 64)
#define TILE_SIZE (8)
int n;
float *
create_matrix_h(unsigned int w, unsigned int h) {
float *m;
m = (float *) malloc(w * h * sizeof(float));
if (m == NULL) {
fprintf(stderr, "Failed to malloc.\n");
exit(1);
}
return m;
}
__global__ void
kernel3(const float *m1, const float *m2, float *m3, unsigned int width) {
const unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
const unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int t, i;
float result = 0, a, b;
for (t = 0; t < width / TILE_SIZE; ++t) {
for (i = 0; i != TILE_SIZE; ++i) {
a = m1[row*width + t*TILE_SIZE + i];
b = m2[(t*TILE_SIZE + i)*width + col];
result += a * b;
}
__syncthreads();
}
m3[row*width + col] = result;
}
float *
create_matrix_d(int w, int h) {
float *m;
if (cudaMalloc(&m, w * h * sizeof(float)) == cudaErrorMemoryAllocation) {
fprintf(stderr, "Failed to cudaMalloc.\n");
return NULL;
//exit(1);
}
return m;
}
void
fill_matrix_h(float *const m, int w, int h, float *const values, int nvalues) {
int i, j = 0;
for (i = 0; i != w * h; ++i) {
m[i] = values[j];
j = (j + 1) % nvalues;
}
}
int
main(void) {
int k;
if (scanf("%d", &n) !=1 || n<1){
return 0;
}
if (scanf(" %d", &k) !=1 || k<0){
return 0;
}
float *hm[3], *dm[3];
dim3 bdim(TILE_SIZE, TILE_SIZE);
dim3 gdim(SIZE/TILE_SIZE, SIZE/TILE_SIZE);
int i;
for(i=0; i<3; ++i) {
hm[i] = create_matrix_h(SIZE, SIZE);
dm[i] = create_matrix_d(SIZE, SIZE);
}
float tem[n*n];
for(i=0; i<n*n; ++i) {
if (scanf(" %f", &tem[i]) !=1){
return 0;
}
}
float temid[n*n];
int j = 0;
for (i = 0; i != n*n; ++i) {
if (i==0 || i == j + (n+1)) {
temid[i] = 1;
j = i;
}
else {
temid[i] = 0;
}
}
fill_matrix_h(hm[0], SIZE, SIZE, tem, sizeof(tem)/sizeof(float));
fill_matrix_h(hm[1], SIZE, SIZE, temid, sizeof(temid)/sizeof(float));
cudaMemcpy(dm[0], hm[0], SIZE*SIZE*sizeof(float), cudaMemcpyHostToDevice);
int w;
for (w=0; w<k; ++w) {
cudaMemcpy(dm[1], hm[1], SIZE*SIZE*sizeof(float), cudaMemcpyHostToDevice);
kernel3<<<gdim, bdim>>>(dm[0], dm[1], dm[2], SIZE);
cudaThreadSynchronize();
cudaMemcpy(hm[2], dm[2], SIZE*SIZE*sizeof(float), cudaMemcpyDeviceToHost);
hm[1] = hm[2];
}
printf(" %.3f ", hm[2][0]);
return 0;
}
谢谢你的回复。现在,当我运行它时,我会在内核调用中得到一个带有以下输入的无限循环。还有新代码。我感谢您的帮助
2
2
1
2
3
4
新代码:
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#define BLOCK 8
#define SIZE (BLOCK * 64)
#define TILE_SIZE (8)
int n;
float *
create_matrix_h(unsigned int w, unsigned int h) {
float *m;
m = (float *) malloc(w * h * sizeof(float));
if (m == NULL) {
fprintf(stderr, "Failed to malloc.\n");
exit(1);
}
return m;
}
void
print_matrix(const float *m, const int w, const int h) {
int x, y;
for (y = 0; y != h; ++y) {
for (x = 0; x != w; ++x)
printf("%.03f ", m[y*w + x]);
printf("\n");
}
}
void
cpu_mult(const float *m1, const float *m2, float *m3, unsigned int width) {
unsigned int i, j, k;
float result;
for (i = 0; i != width; ++i) {
for (j = 0; j != width; ++j) {
result = 0;
for (k = 0; k != width; ++k)
result += m1[i*width + k] * m2[k*width + j];
m3[i*width + j] = result;
}
}
}
__global__ void
kernel3(const float *m1, const float *m2, float *m3, unsigned int width) {
const unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
const unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
unsigned int t, i;
float result = 0, a, b;
for (t = 0; t < width / TILE_SIZE; ++t) {
for (i = 0; i != TILE_SIZE; ++i) {
a = m1[row*width + t*TILE_SIZE + i];
b = m2[(t*TILE_SIZE + i)*width + col];
result += a * b;
}
__syncthreads();
}
m3[row*width + col] = result;
}
float *
create_matrix_d(int w, int h) {
float *m;
if (cudaMalloc(&m, w * h * sizeof(float)) == cudaErrorMemoryAllocation) {
fprintf(stderr, "Failed to cudaMalloc.\n");
return NULL;
//exit(1);
}
return m;
}
void
fill_matrix_h(float *const m, int w, int h, float *const values, int nvalues) {
int i, j = 0;
for (i = 0; i != w * h; ++i) {
m[i] = values[j];
j = (j + 1) % nvalues;
}
}
int
main(void) {
int k;
if (scanf("%d", &n) !=1 || n<1){
return 0;
}
if (scanf(" %d", &k) !=1 || k<0){
return 0;
}
float *hm[3], *dm[3];
dim3 bdim(TILE_SIZE, TILE_SIZE);
dim3 gdim(SIZE/TILE_SIZE, SIZE/TILE_SIZE);
int i;
for(i=0; i<3; ++i) {
hm[i] = create_matrix_h(SIZE, SIZE);
dm[i] = create_matrix_d(SIZE, SIZE);
}
float tem[n*n];
for(i=0; i<n*n; ++i) {
if (scanf(" %f", &tem[i]) !=1){
return 0;
}
}
float temid[n*n];
int j = 0;
for (i = 0; i != n*n; ++i) {
if (i==0 || j == n) { // not j + (n+1)
temid[i] = 1;
j=0;
}
else {
temid[i] = 0;
j++;
}
}
fill_matrix_h(hm[0], SIZE, SIZE, tem, sizeof(tem)/sizeof(float));
fill_matrix_h(hm[1], SIZE, SIZE, temid, sizeof(temid)/sizeof(float));
cudaMemcpy(dm[0], hm[0], SIZE*SIZE*sizeof(float), cudaMemcpyHostToDevice);
dm[1] = dm[0]; // For the first iteration Result = A * A;
int w;
if (k==0) {
hm[2] = hm[1];
}
else if (k==1) {
hm[2] = hm[0];
}
else {
for (w=1; w<k; ++w) {
kernel3<<<gdim, bdim>>>(dm[0], dm[1], dm[2], SIZE);
cudaThreadSynchronize();
// No need to copy back to host
// cudaMemcpy(hm[2], dm[2], SIZE*SIZE*sizeof(float), cudaMemcpyDeviceToHost);
// Copy between device pointers
cudaMemcpy(dm[1], dm[2], SIZE*SIZE*sizeof(float), cudaMemcpyDeviceToDevice);
}
cudaMemcpy(hm[2], dm[1], SIZE*SIZE*sizeof(float), cudaMemcpyDeviceToHost);
}
print_matrix(hm[2], n, n);
return 0;
}