https://storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_ssd_tflite_v1.zip
我正在制作一个支持 gpu 委托的 android 对象检测应用程序。上面的链接是针对 tensorflow lite 对象检测浮点模型的。没有可用的文档。我想知道这个 tflite 模型的变量的输入和输出形式,以便我可以将它提供给解释器以进行 gpu 委托。提前致谢!
https://storage.googleapis.com/download.tensorflow.org/models/tflite/mobilenet_ssd_tflite_v1.zip
我正在制作一个支持 gpu 委托的 android 对象检测应用程序。上面的链接是针对 tensorflow lite 对象检测浮点模型的。没有可用的文档。我想知道这个 tflite 模型的变量的输入和输出形式,以便我可以将它提供给解释器以进行 gpu 委托。提前致谢!
我使用合作实验室。所以我使用下面的代码来确定输入和输出:
import tensorflow as tf
interpreter = tf.lite.Interpreter('mobilenet_ssd.tflite')
print(interpreter.get_input_details())
print(interpreter.get_output_details())
所以解压缩文件夹,找到文件并使用上面的代码加载它。我用上面的代码做到了,结果是:
[{'name': 'Preprocessor/sub', 'index': 165, 'shape': array([ 1, 300, 300, 3], dtype=int32), 'shape_signature': array([ 1, 300, 300, 3], dtype=int32), 'dtype': , 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array( [], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters': {}}]
[{'name': 'concat', 'index': 172, 'shape': array([ 1, 1917, 4], dtype=int32), 'shape_signature': array([ 1, 1917, 4], dtype =int32), 'dtype': , 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype=float32), 'zero_points': array([], dtype=int32 ), 'quantized_dimension': 0}, 'sparsity_parameters': {}}, {'name': 'concat_1', 'index': 173, 'shape': array([ 1, 1917, 91], dtype=int32) , 'shape_signature': array([ 1, 1917, 91], dtype=int32), 'dtype': , 'quantization': (0.0, 0), 'quantization_parameters': {'scales': array([], dtype =float32), 'zero_points': 数组([], dtype=int32), 'quantized_dimension': 0}, 'sparsity_parameters':{}}]
在 android 里面你也可以这样做:
// Initialize interpreter
@Throws(IOException::class)
private suspend fun initializeInterpreter(app: Application) = withContext(Dispatchers.IO) {
// Load the TF Lite model from asset folder and initialize TF Lite Interpreter without NNAPI enabled.
val assetManager = app.assets
val model = loadModelFile(assetManager, "mobilenet_ssd.tflite")
val options = Interpreter.Options()
options.setUseNNAPI(false)
interpreter = Interpreter(model, options)
// Reads type and shape of input and output tensors, respectively.
val imageTensorIndex = 0
val inputShape: IntArray =
interpreter.getInputTensor(imageTensorIndex).shape() // {1, length}
Log.e("INPUT_TENSOR_WHOLE", Arrays.toString(inputShape))
val imageDataType: DataType =
interpreter.getInputTensor(imageTensorIndex).dataType()
Log.e("INPUT_DATA_TYPE", imageDataType.toString())
//modelInputSize indicates how many bytes of memory we should allocate to store the input for our TensorFlow Lite model.
//FLOAT_TYPE_SIZE indicates how many bytes our input data type will require. We use float32, so it is 4 bytes.
//PIXEL_SIZE indicates how many color channels there are in each pixel. Our input image is a colored image, so we have 3 color channel.
inputImageWidth = inputShape[1]
inputImageHeight = inputShape[2]
modelInputSize = FLOAT_TYPE_SIZE * inputImageWidth *
inputImageHeight * PIXEL_SIZE
val probabilityTensorIndex = 0
outputShape =
interpreter.getOutputTensor(probabilityTensorIndex).shape()// {1, NUM_CLASSES}
Log.e("OUTPUT_TENSOR_SHAPE", outputShape.contentToString())
val probabilityDataType: DataType =
interpreter.getOutputTensor(probabilityTensorIndex).dataType()
Log.e("OUTPUT_DATA_TYPE", probabilityDataType.toString())
isInitialized = true
Log.e(TAG, "Initialized TFLite interpreter.")
// Inputs outputs
/*val inputTensorModel: Int = interpreter.getInputIndex("input_1")
Log.e("INPUT_TENSOR", inputTensorModel.toString())*/
}
@Throws(IOException::class)
private fun loadModelFile(assetManager: AssetManager, filename: String): MappedByteBuffer {
val fileDescriptor = assetManager.openFd(filename)
val inputStream = FileInputStream(fileDescriptor.fileDescriptor)
val fileChannel = inputStream.channel
val startOffset = fileDescriptor.startOffset
val declaredLength = fileDescriptor.declaredLength
return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength)
}
如果您需要任何帮助标记我。