0

我试图在 MNIST 数据集的帮助下实现 shap DeepExplainer (DeepSHAP) 模块。但我收到以下错误:

ValueError:两个形状中的维度 1 必须相等,但为 10 和 1。形状为 [?,10] 和 [?,1]。对于 gradients_7/dense_2_1/Softmax_grad/gradients/gradients_7/dense_2_1/Softmax_grad/truediv_grad/Select_1 (op: 'Select') 输入形状:[?,1], [?,10], [?,10]。

错误在该行中: shap_values = e.shap_values(x_test[1:5])

完整代码:

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
             activation='relu',
             input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
          optimizer=keras.optimizers.Adadelta(),
          metrics=['accuracy'])

model.fit(x_train, y_train,
      batch_size=batch_size,
      epochs=epochs,
      verbose=1,
      validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

import shap
import numpy as np

# select a set of background examples to take an expectation over
background = x_train[np.random.choice(x_train.shape[0], 100, replace=False)]

# explain predictions of the model on three images
e = shap.DeepExplainer(model, background)
shap_values = e.shap_values(x_test[1:5])
shap.image_plot(shap_values, -x_test[1:5])
4

1 回答 1

0

您使用的是哪个 Keras 版本?您可以从您的代码打印keras.__version__

当我在 下导入 keras 时Tensorflow,您的代码按预期工作。主要变化之一是使用adam优化器,它在您的情况下效果更好,因为它能够在几个时期内提高准确性。我试过Adadelta了,但它正在慢慢优化。自己检查性能。

检查以下代码进行小的修改(不多)。我所做的只是在引发其他错误的情况下导入Tensorflow模块keas 2.3.1

from __future__ import print_function
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import backend as K

batch_size = 256
num_classes = 10
epochs = 12

# input image dimensions
img_rows, img_cols = 28, 28

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),activation='relu', input_shape=input_shape,))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=tf.keras.losses.categorical_crossentropy,
          optimizer=tf.keras.optimizers.Adam(0.001),#tf.keras.optimizers.Adadelta(),
          metrics=['accuracy'])

model.fit(x_train, y_train,
          steps_per_epoch = x_train.shape[0]//batch_size,
      batch_size=batch_size,
      epochs=epochs,
      verbose=1,
      validation_data=(x_test, y_test),validation_steps=x_test.shape[0]//batch_size)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
于 2020-06-02T14:13:11.463 回答