考虑这个数据框dat1
:
dat1 <- data.frame(Region = rep(c("r1","r2"), each = 100),
State = rep(c("NY","MA","FL","GA"), each = 10),
Loc = rep(c("a","b","c","d","e","f","g","h"),each = 5),
ID = rep(c(1:10), each=2),
var1 = rnorm(200),
var2 = rnorm(200),
var3 = rnorm(200),
var4 = rnorm(200),
var5 = rnorm(200))
我有类似于dat1
上面创建的数据框。Region
,State
和Loc
是每次观察的分组变量,每次观察ID
进行 5 次测量var1:var5
。对于每个分组变量,我在每个var
. 当发现显着差异时,我使用该TukeyHSD()
函数和包中的multcompLetters()
函数在multcompView
组上生成 CLD。由于我想为每个分组变量执行此操作,因此我正在尝试编写一个函数来防止自己重复和打错字。下面显示了我在哪里:
library(tidyverse)
library(multcomp)
library(multcompView)
Tuk <- function(dat,groupvar,var){
TUK <- TukeyHSD(aov(lm(get(var) ~ get(groupvar), data=dat)))
names(TUK)[[1]] <- paste0(groupvar)
lets<-multcompLetters(extract_p(TUK$groupvar))
lets
}
#assuming all 5 vars were significant in the anovas, I would then run this for each grouping variable as follows:
vars <- paste0(names(dat1[,5:9]))
#by Region
lapply(vars, FUN=Tuk, dat=dat1, groupvar="Region")
#by State
lapply(vars, FUN=Tuk, dat=dat1, groupvar="State")
#by Loc
lapply(vars, FUN=Tuk, dat=dat1, groupvar="Loc")
代码在函数之外工作。该函数将创建模型,但我不知道如何格式化它以便识别groupvar
零件的内容multcompLetters(extract_p())
?我该如何解决这个问题,以及如何让它输出一个整洁的表格,该表格显示每个组和我一次给它的每个变量的字母。例如,State
使用所有 5 个变量看起来像这样
NY MA FL GA
var1 a ab c a
var2 a ab b c
var3 a c ab bc
var4 ab c ab ab
var5 a b c b
此外,是否有一种合理的方法可以使此函数生成显示 CLD 字母的组的箱线图(针对每个变量)?