3

我正在使用 Pandas 和 PyProj 将东向和北向转换为经度和纬度,然后将拆分输出保存为像这样的 2 列....

v84 = Proj(proj="latlong",towgs84="0,0,0",ellps="WGS84")
v36 = Proj(proj="latlong", k=0.9996012717, ellps="airy",
        towgs84="446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894")
vgrid = Proj(init="world:bng")


def convertLL(row):

    easting = row['easting']
    northing = row['northing']

    vlon36, vlat36 = vgrid(easting, northing, inverse=True)

    converted = transform(v36, v84, vlon36, vlat36)

    row['longitude'] = converted[0]
    row['latitude'] = converted[1]

    return row


values = pd.read_csv("values.csv")
values = values.apply(convertLL, axis=1)

这是可行的,但速度很慢,并且在较大的数据集上会超时。为了改进事情,我试图将其转换为使用 lamba 函数,希望能加快速度。到目前为止我有这个...

def convertLL(easting, northing):

    vlon36, vlat36 = vgrid(easting, northing, inverse=True)

    converted = transform(v36, v84, vlon36, vlat36)

    row = row['longitude'] = converted[0]

    return row


values ['longitude'] = values.apply(lambda row: convertLL(row['easting'], row['northing']), axis=1)

这个转换后的版本正在运行并且比我的旧版本更快,并且在更大的数据集上不会超时,但这仅适用于经度,有没有办法让它也做纬度?

另外,这是矢量化的吗?我可以再加快速度吗?

编辑

数据样本...

name | northing | easting | latitude | longitude
------------------------------------------------
tl1  | 378778   | 366746  |          |
tl2  | 384732   | 364758  |          |
4

1 回答 1

3

由于主题,我认为我们不能只见树木不见森林。如果我们为您查看文档,transform您会看到:

  • xx (scalar or array (numpy or python)) – 输入 x 坐标。
  • yy (scalar or array (numpy or python)) – 输入 y 坐标。

伟大的; numpy 数组正是我们所需要的。Apd.DataFrame可以被认为是一个数组字典,所以我们只需要隔离这些列并将它们传递给函数。有一个小问题 - a 的列DataFrame将是 a Series,这transform将拒绝,所以我们只需要使用该values属性。这个迷你示例直接等同于您的初始方法:

def vectorized_convert(df):
    vlon36, vlat36 = vgrid(df['easting'].values, 
                           df['northing'].values, 
                           inverse=True)
    converted = transform(v36, v84, vlon36, vlat36)
    df['longitude'] = converted[0]
    df['latitude'] = converted[1]
    return df

df = pd.DataFrame({'northing': [378778, 384732],
                   'easting': [366746, 364758]})

print(vectorized_convert(df))

我们完成了。除此之外,我们可以查看 100 行的时序(当前的方法对于我通常的 100,000 行时序示例来说是爆炸性的):

def current_way(df):
    df = df.apply(convertLL, axis=1)
    return df


def vectorized_convert(df):
    vlon36, vlat36 = vgrid(df['easting'].values, 
                           df['northing'].values, 
                           inverse=True)

    converted = transform(v36, v84, vlon36, vlat36)
    df['longitude'] = converted[0]
    df['latitude'] = converted[1]
    return df


df = pd.DataFrame({'northing': [378778, 384732] * 50,
                   'easting': [366746, 364758] * 50})

给出:

%timeit current_way(df)
289 ms ± 15.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit vectorized_convert(df)
2.95 ms ± 59.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
于 2020-05-26T19:40:10.563 回答