使用apply
.
res <- t(`colnames<-`(apply(dat, 1, FUN=function(x) {
rr <- binom.test(x[3], x[2], x[4], "two.sided")
with(rr, c(x, "2.5%"=conf.int[1], estimate=unname(estimate),
"97.5%"=conf.int[2], p.value=unname(p.value)))
}), dat$km))
res
# km n_1 prey_pred p0_prey_pred 2.5% estimate 97.5% p.value
# 80 80 93 12 0.1190 0.068487201 0.12903226 0.21454832 7.482160e-01
# 81 81 1541 103 0.0793 0.054881013 0.06683971 0.08047927 7.307921e-02
# 83 83 316 5 0.0364 0.005157062 0.01582278 0.03653685 4.960168e-02
# 84 84 721 44 0.0796 0.044688325 0.06102635 0.08106220 7.311463e-02
# 89 89 866 58 0.1310 0.051245893 0.06697460 0.08572304 1.656621e-09
编辑
如果您有多个列集,采用宽格式(并且出于某种原因想要留在那里)
dat2 <- `colnames<-`(cbind(dat, dat[-1]), c("km", "n_1.1", "prey_pred.1", "p0_prey_pred.1",
"n_1.2", "prey_pred.2", "p0_prey_pred.2"))
dat2[1:3,]
# km n_1.1 prey_pred.1 p0_prey_pred.1 n_1.2 prey_pred.2 p0_prey_pred.2
# 1 80 93 12 0.1190 93 12 0.1190
# 2 81 1541 103 0.0793 1541 103 0.0793
# 3 83 316 5 0.0364 316 5 0.0364
你可以这样做:
res2 <- t(`colnames<-`(apply(dat2, 1, FUN=function(x) {
rr1 <- binom.test(x[3], x[2], x[4], "two.sided")
rr2 <- binom.test(x[6], x[5], x[7], "two.sided")
rrr1 <- with(rr1, c("2.5%.1"=conf.int[1], estimate.1=unname(estimate),
"97.5%.1"=conf.int[2], p.value.1=unname(p.value)))
rrr2 <- with(rr2, c("2.5%.1"=conf.int[1], estimate.1=unname(estimate),
"97.5%.1"=conf.int[2], p.value.1=unname(p.value)))
c(x, rrr1, rrr2)
}), dat2$km))
res2
# km n_1.1 prey_pred.1 p0_prey_pred.1 n_1.2 prey_pred.2 p0_prey_pred.2 2.5%.1
# 80 80 93 12 0.1190 93 12 0.1190 0.068487201
# 81 81 1541 103 0.0793 1541 103 0.0793 0.054881013
# 83 83 316 5 0.0364 316 5 0.0364 0.005157062
# 84 84 721 44 0.0796 721 44 0.0796 0.044688325
# 89 89 866 58 0.1310 866 58 0.1310 0.051245893
# estimate.1 97.5%.1 p.value.1 2.5%.1 estimate.1 97.5%.1 p.value.1
# 80 0.12903226 0.21454832 7.482160e-01 0.068487201 0.12903226 0.21454832 7.482160e-01
# 81 0.06683971 0.08047927 7.307921e-02 0.054881013 0.06683971 0.08047927 7.307921e-02
# 83 0.01582278 0.03653685 4.960168e-02 0.005157062 0.01582278 0.03653685 4.960168e-02
# 84 0.06102635 0.08106220 7.311463e-02 0.044688325 0.06102635 0.08106220 7.311463e-02
# 89 0.06697460 0.08572304 1.656621e-09 0.051245893 0.06697460 0.08572304 1.656621e-09
可以将其编码得更嵌套,但我建议让事情变得简单,以便以后其他人更好地理解正在发生的事情,并且可能包括自己。
数据:
dat <- read.table(text="km n_1 prey_pred p0_prey_pred
80 93 12 0.119
81 1541 103 0.0793
83 316 5 0.0364
84 721 44 0.0796
89 866 58 0.131 ", header=TRUE)