卡尔曼滤波器可以处理不相等的时间间隔吗?
是的。您需要注意两件事 - 间隔之间的时间步长不同,您需要考虑这将对转换矩阵(描述系统动力学 - 这些通常具有 delta-t 依赖性)和协方差矩阵产生的影响 -特别是过渡协方差(观察之间的时间越长,系统如何演变的不确定性就越大。
我不确定这是否重要,但我的数据不是速度或位置(我发现的所有卡尔曼示例均指该案例)
您可以根据需要应用卡尔曼滤波器。但是请记住,卡尔曼滤波器实际上是一个状态估计器。特别是它是具有线性动力学和高斯噪声的系统的最佳状态估计器。术语“过滤器”可能有点误导。如果您没有要表示其动态的系统,则需要“弥补”一些动态以捕捉您对生成数据的物理过程的直觉/理解。
很明显,x=50 处的点是噪声。
这对我来说并不明显,因为我不知道你的数据是什么,或者它是如何收集的。所有测量都会受到噪声的影响,卡尔曼滤波器非常擅长抑制噪声。你似乎想要对这个例子做的是完全拒绝异常值。
下面是一些可能有助于做到这一点的代码。基本上,它在每个数据点被屏蔽(忽略)的情况下多次训练 KF,然后通过评估这对观察协方差的影响来确定异常值的可能性。请注意,可能有更好的方法来拒绝异常值。
from pykalman import KalmanFilter
import numpy as np
import matplotlib.pyplot as plt
import copy
outlier_thresh = 0.95
# Treat y as position, and that y-dot is
# an unobserved state - the velocity,
# which is modelled as changing slowly (inertia)
# state vector [y,
# y_dot]
# transition_matrix = [[1, dt],
# [0, 1]]
observation_matrix = np.asarray([[1, 0]])
# observations:
t = [1,10,22,35,40,51,59,72,85,90,100]
# dt betweeen observations:
dt = [np.mean(np.diff(t))] + list(np.diff(t))
transition_matrices = np.asarray([[[1, each_dt],[0, 1]]
for each_dt in dt])
# observations
y = np.transpose(np.asarray([[0.2,0.23,0.3,0.4,0.5,0.2,
0.65,0.67,0.62,0.5,0.4]]))
y = np.ma.array(y)
leave_1_out_cov = []
for i in range(len(y)):
y_masked = np.ma.array(copy.deepcopy(y))
y_masked[i] = np.ma.masked
kf1 = KalmanFilter(transition_matrices = transition_matrices,
observation_matrices = observation_matrix)
kf1 = kf1.em(y_masked)
leave_1_out_cov.append(kf1.observation_covariance[0,0])
# Find indexes that contributed excessively to observation covariance
outliers = (leave_1_out_cov / np.mean(leave_1_out_cov)) < outlier_thresh
for i in range(len(outliers)):
if outliers[i]:
y[i] = np.ma.masked
kf1 = KalmanFilter(transition_matrices = transition_matrices,
observation_matrices = observation_matrix)
kf1 = kf1.em(y)
(smoothed_state_means, smoothed_state_covariances) = kf1.smooth(y)
plt.figure()
plt.plot(t, y, 'go-', label="Observations")
plt.plot(t, smoothed_state_means[:,0], 'b--', label="Value Estimate" )
plt.legend(loc="upper left")
plt.xlabel("Time (s)")
plt.ylabel("Value (unit)")
plt.show()
这会产生以下情节: