我正在尝试使用 pandas 重塑数据,并且很难将其转换为正确的格式。大致上,数据如下所示*:
df = pd.DataFrame({'PRODUCT':['1','2'],
'DESIGN_START':[pd.Timestamp('2020-01-05'),pd.Timestamp('2020-01-17')],
'DESIGN_COMPLETE':[pd.Timestamp('2020-01-22'),pd.Timestamp('2020-03-04')],
'PRODUCTION_START':[pd.Timestamp('2020-02-07'),pd.Timestamp('2020-03-15')],
'PRODUCTION_COMPLETE':[np.nan,pd.Timestamp('2020-04-28')]})
print(df)
PRODUCT DESIGN_START DESIGN_COMPLETE PRODUCTION_START PRODUCTION_COMPLETE
0 1 2020-01-05 2020-01-22 2020-02-07 NaT
1 2 2020-01-17 2020-03-04 2020-03-15 2020-04-28
我想重塑数据,使其看起来像这样:
reshaped_df = pd.DataFrame({'DATE':[pd.Timestamp('2020-01-05'),pd.Timestamp('2020-01-17'),
pd.Timestamp('2020-01-22'),pd.Timestamp('2020-03-04'),
pd.Timestamp('2020-02-07'),pd.Timestamp('2020-03-15'),
np.nan,pd.Timestamp('2020-04-28')],
'STAGE':['design','design','design','design','production','production','production','production'],
'STATUS':['started','started','completed','completed','started','started','completed','completed']})
print(reshaped_df)
DATE STAGE STATUS
0 2020-01-05 design started
1 2020-01-17 design started
2 2020-01-22 design completed
3 2020-03-04 design completed
4 2020-02-07 production started
5 2020-03-15 production started
6 NaT production completed
7 2020-04-28 production completed
我该怎么做呢?有没有更好的格式来重塑它?
最终我想对数据做一些分组总结,比如每个步骤发生的次数,例如
reshaped_df.groupby(['STAGE','STATUS'])['DATE'].count()
STAGE STATUS
design completed 2
started 2
production completed 1
started 2
Name: DATE, dtype: int64
谢谢
- 数据实际上包含许多用于制造管道不同阶段的日期开始/停止列