我相信您正在寻找的是glyphs。您可以将自己的数据集作为字形几何传递,然后将数据集绘制在超级网格的每个点中。无需详细说明如何定位字形,根据标量等为它们着色,这里有一个简单的“外星人入侵”场景作为示例:
import numpy as np
import pyvista as pv
# get dataset for the glyphs: supertoroid in xy plane
saucer = pv.ParametricSuperToroid(ringradius=0.5, n2=1.5, zradius=0.5)
saucer.rotate_y(90)
# saucer.plot() # <-- check how a single saucer looks like
# get dataset where to put glyphs
x,y,z = np.mgrid[-1:2, -1:2, :2]
mesh = pv.StructuredGrid(x, y, z)
# construct the glyphs on top of the mesh
glyphs = mesh.glyph(geom=saucer, factor=0.3)
# glyphs.plot() # <-- simplest way to plot it
# create Plotter and add our glyphs with some nontrivial lighting
plotter = pv.Plotter(window_size=(1000, 800))
plotter.add_mesh(glyphs, color=[0.2, 0.2, 0.2], specular=1, specular_power=15)
plotter.show()
我添加了一些强烈的镜面反射光,让碟子看起来更凶险:
但是您的问题的关键点是通过将其作为geom
关键字mesh.glyph
传递来从您的超级网格创建字形。其他关键字(例如orient
和scale
)对于类似箭头的字形很有用,您可以在其中使用字形来表示数据集的矢量信息。
您在评论中询问是否可以沿数据集改变字形。我确信这是不可能的,但是VTK 文档清楚地提到了定义要使用的字形集合的可能性:
通过创建源对象表可以使用多个字形,每个源对象定义不同的字形。如果定义了一个字形表,则可以使用标量值或矢量幅度对该表进行索引。
事实证明,它还PyVista
没有公开这个功能,但是基础vtk
包让我们动手了。这是一个基于DataSetFilters.glyph
的概念证明,我将由 PyVista 开发人员浮动,看看是否有兴趣公开此功能。
import numpy as np
import pyvista as pv
from pyvista.core.filters import _get_output # just for this standalone example
import vtk
pyvista = pv # just for this standalone example
# below: adapted from core/filters.py
def multiglyph(dataset, orient=True, scale=True, factor=1.0,
tolerance=0.0, absolute=False, clamping=False, rng=None,
geom_datasets=None, geom_values=None):
"""Copy a geometric representation (called a glyph) to every point in the input dataset.
The glyphs may be oriented along the input vectors, and they may be scaled according to scalar
data or vector magnitude.
Parameters
----------
orient : bool
Use the active vectors array to orient the glyphs
scale : bool
Use the active scalars to scale the glyphs
factor : float
Scale factor applied to sclaing array
tolerance : float, optional
Specify tolerance in terms of fraction of bounding box length.
Float value is between 0 and 1. Default is 0.0. If ``absolute``
is ``True`` then the tolerance can be an absolute distance.
absolute : bool, optional
Control if ``tolerance`` is an absolute distance or a fraction.
clamping: bool
Turn on/off clamping of "scalar" values to range.
rng: tuple(float), optional
Set the range of values to be considered by the filter when scalars
values are provided.
geom_datasets : tuple(vtk.vtkDataSet), optional
The geometries to use for the glyphs in table mode
geom_values : tuple(float), optional
The value to assign to each geometry dataset, optional
"""
# Clean the points before glyphing
small = pyvista.PolyData(dataset.points)
small.point_arrays.update(dataset.point_arrays)
dataset = small.clean(point_merging=True, merge_tol=tolerance,
lines_to_points=False, polys_to_lines=False,
strips_to_polys=False, inplace=False,
absolute=absolute)
# Make glyphing geometry
if not geom_datasets:
arrow = vtk.vtkArrowSource()
arrow.Update()
geom_datasets = arrow.GetOutput(),
geom_values = 0,
# check if the geometry datasets are consistent
if not len(geom_datasets) == len(geom_values):
raise ValueError('geom_datasets and geom_values must have the same length!')
# TODO: other kinds of sanitization, e.g. check for sequences etc.
# Run the algorithm
alg = vtk.vtkGlyph3D()
if len(geom_values) == 1:
# use a single glyph
alg.SetSourceData(geom_datasets[0])
else:
alg.SetIndexModeToScalar()
# TODO: index by vectors?
# TODO: SetInputArrayToProcess for arbitrary arrays, maybe?
alg.SetRange(min(geom_values), max(geom_values))
# TODO: different Range?
for val, geom in zip(geom_values, geom_datasets):
alg.SetSourceData(val, geom)
if isinstance(scale, str):
dataset.active_scalars_name = scale
scale = True
if scale:
if dataset.active_scalars is not None:
if dataset.active_scalars.ndim > 1:
alg.SetScaleModeToScaleByVector()
else:
alg.SetScaleModeToScaleByScalar()
else:
alg.SetScaleModeToDataScalingOff()
if isinstance(orient, str):
dataset.active_vectors_name = orient
orient = True
if rng is not None:
alg.SetRange(rng)
alg.SetOrient(orient)
alg.SetInputData(dataset)
alg.SetVectorModeToUseVector()
alg.SetScaleFactor(factor)
alg.SetClamping(clamping)
alg.Update()
return _get_output(alg)
def example():
"""Small glyph example"""
rng = np.random.default_rng()
# get dataset for the glyphs: supertoroid in xy plane
# use N random kinds of toroids over a mesh with 27 points
N = 5
values = np.arange(N) # values for scalars to look up glyphs by
geoms = [pv.ParametricSuperToroid(n1=n1, n2=n2) for n1,n2 in rng.uniform(0.5, 2, size=(N, 2))]
for geom in geoms:
# make the disks horizontal for aesthetics
geom.rotate_y(90)
# get dataset where to put glyphs
x,y,z = np.mgrid[-1:2, -1:2, -1:2]
mesh = pv.StructuredGrid(x, y, z)
# add random scalars
mesh.point_arrays['scalars'] = rng.integers(0, N, size=x.size)
# construct the glyphs on top of the mesh; don't scale by scalars now
glyphs = multiglyph(mesh, geom_datasets=geoms, geom_values=values, scale=False, factor=0.3)
# create Plotter and add our glyphs with some nontrivial lighting
plotter = pv.Plotter(window_size=(1000, 800))
plotter.add_mesh(glyphs, specular=1, specular_power=15)
plotter.show()
if __name__ == "__main__":
example()
上面的multiglyph
功能与 大体相同mesh.glyph
,但我将geom
关键字替换为两个关键字,geom_datasets
和geom_values
。这些定义了一个索引 -> 几何映射,然后用于根据数组标量查找每个字形。
您问是否可以独立为字形着色:可以。在上面的概念证明中,字形的选择与标量相关(选择向量同样容易;我不太确定任意数组)。但是,您可以在调用时轻松选择要着色的数组pv.Plotter.add_mesh
,因此我的建议是使用除适当标量之外的其他东西来为字形着色。
这是一个典型的输出:
我保留了用于着色的标量,以便更容易看到字形之间的差异。您可以看到根据随机标量随机选择了五种不同的字形。如果您设置非整数标量,它仍然可以工作;我怀疑vtk
选择最接近的标量或类似的东西进行查找。