0

我有一个存储在 1 个字节中的浮点数(作为 8 位浮点数)。我们在 boost 或 c++11(或 14)中是否有一个库函数,可以将浮点数转换为小数?

我知道如何将 8 位(符号位、指数、尾数)转换为小数。我只是想利用库函数而不是编写一个新函数?

引用现有函数也会有所帮助

4

1 回答 1

1

标准方法不会很有效,但存在:

friend std::ostream& operator<<(std::ostream& os, Num n) {
    return os << n.mantissa * pow(2.0f, n.exp) * (n.sign? -1:1);
}

当然,这是使用内置浮点序列化代码作弊。但这似乎正是您所要求的。

为了好玩,我整理了一个非常有限的定点类型。请注意,构造函数有很大缺陷(它不知道(de)normal,NaN,并且根本不能很好地缩放小尾数)。但它确实证明了上面的转换,所以我可以检查它们是否正常工作:

住在科利鲁

#include <iostream>
#include <limits>
#include <cmath>

template <typename Underlying = std::uint8_t, unsigned expbits = 4>
struct Num {
    constexpr Num() noexcept : sign{}, raw_exp{}, mantissa{} {} // NSMI is c++20 for bitfield

    template <typename F> Num(F d) {
        // This is a lame constructor, for demo only
        // DO NOT USE FOR PRODUCTION/SERIOUS CODE
        sign = std::signbit(d);

        int e=0;
        d = std::frexp(std::abs(d), &e);
        effective_exp(e - manbits);

        mantissa = std::ldexp(d, manbits);
    }

    explicit constexpr operator double() const { return mantissa * pow(2.0, effective_exp()) * (sign? -1:1); }
    explicit constexpr operator float() const { return mantissa * pow(2.0f, effective_exp()) * (sign? -1:1); }

  private:
    friend std::ostream& operator<<(std::ostream& os, Num n) {
        return os << static_cast<double>(n);
    }

    constexpr auto effective_exp() const { return raw_exp - (1<<(expbits - 1)); }
    void effective_exp(int e) {
        if (e>maxexp||e<minexp) throw std::range_error("overflow");
        raw_exp = e + (1<<(expbits - 1));
    }

    // storage and dimensioning
    static_assert(not std::numeric_limits<Underlying>::is_signed);
    static constexpr unsigned bits     = std::numeric_limits<Underlying>::digits;
    static constexpr unsigned signbits = 1;
    static constexpr unsigned manbits  = bits - expbits - signbits;
    static constexpr int maxexp        = 1<<(expbits-1);
    static constexpr int minexp        = 1 - (1<<(expbits-1));

    Underlying sign: signbits, raw_exp: expbits, mantissa: manbits;
};


namespace { // just for demo, very inefficient because not essential
    template <typename U, unsigned s>
    static inline bool operator<(Num<U, s> const& lhs, double rhs) { return lhs.operator double() < rhs; }
    template <typename U, unsigned s>
    static inline bool operator<(Num<U, s> const& lhs, Num<U, s> const& rhs) { return lhs < rhs.operator double();
    }
    template <typename U, unsigned s>
    static inline auto& operator+=(Num<U, s>& lhs, double rhs) {
        return lhs = lhs.operator float() + rhs;
    }
} // namespace

int main() {
    {
        static_assert(sizeof(Num<>) == sizeof(char));
        Num x = 1.8;
        std::cout << "Proof of pudding: " << x << "\n";
    }

    // just more paces
    std::cout << "----- 24 bits, 7 expbits: \n";
    for (Num<uint32_t, 7> n = -10.0; n < 10.0; n += 1.1)
        std::cout << n << "\n";
    std::cout << "----- 10 bits, 5 expbits: \n";
    for (Num<uint16_t, 5> n = -10.0; n < 10.0; n += 1.1)
        std::cout << n << "\n";
    // don't try with 8bit because the flawed ctor will underflow, oh well
}

印刷

Proof of pudding: 1.75
----- 24 bits, 7 expbits: 
-10
-8.9
-7.8
-6.7
-5.6
-4.5
-3.4
-2.3
-1.2
-0.0999978
1
2.1
3.2
4.3
5.4
6.5
7.6
8.7
9.8
----- 10 bits, 5 expbits: 
-10
-8.89062
-7.78906
-6.6875
-5.58594
-4.48438
-3.38281
-2.28125
-1.17969
-0.0795898
1.01953
2.11719
3.21484
4.3125
5.40625
6.5
7.59375
8.6875
9.78125
于 2020-04-26T15:48:49.533 回答