每次我运行相同的代码来训练数据集,预测测试集上的值,然后计算相关系数和 MSE 值时,这些值发生变化是否正常?为什么会这样?
import pandas as pd
from sklearn import tree
from scipy.stats import linregress
training = pd.read_csv('csvfile1.csv') #training data set
target = pd.DataFrame(training, columns=['target_column']) #target
testing = pd.read_csv('csvfile2.csv') #test set loaded from a different file
true = pd.DataFrame(testing, columns=['predicted_value']) #for comparison after predicting the target
X_train = training
target_vec = target['target_column']
Y_test = training
regression = tree.DecisionTreeRegressor(criterion='mse', splitter='best')
model = regression.fit(X_train, target_vec)
output = regression.predict(Y_test) #predictions
print(linregress(output, true.predicted_value)) #printing out rvalue