我一直在使用 OpenAI Gym LunarLander 测试 DQN 神经网络。我已经到了慢慢学习的地步。由于我从 CartPole 问题开始,该问题在几分钟/几集内就解决了,我最初认为 LunarLander 将以相似的速度运行,但事实证明我错了。在拥有可以正确运行的体面代码并让神经网络正确学习大约一个小时后,我认为在经过一段时间的训练后为模型设置一个保存系统是个好主意,这样我可以稍后再回来.
我设置了所有我想要的元素,以确保我可以正确跟踪神经网络的运行情况,但是在一切正常运行之后,当我启动它时env.render()
,前几个步骤执行得不错速度,但随后,在特定点之后,整个渲染速度减慢,好像代码中的某些内容需要很长时间才能处理(我还没有设法确定发生这种情况的确切时间)。
由于我最近开始在 python 中更深入地使用 keras 和机器学习,我仍然不熟悉组件在系统中的行为方式以及哪些组件会对计算能力产生重大影响。
这是运行我所拥有的代码所必需的两部分代码:
LunarLanderConfig.py
ENVIRONMENT = 'LunarLander-v2'
EPISODES = 10000
POINTS_TO_SOLVE = 200
CONSECUTIVE_EPISODES_TO_SOLVE = 100
MAX_TICKS = 3000
GAMMA = 0.99
ALPHA = 0.001
MEMORY_SIZE = 1000000
EPSILON = 1.0
EPSILON_MIN = 0.01
EPSILON_DECAY = 0.995
BATCH_SIZE = 64
TRAINING_FREQUENCY = 4
LunarLander_AI.py
# IMPORTS
import gym
import random
import sys
import os
from collections import deque
from keras import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.activations import relu, linear
from keras.callbacks import CSVLogger
import numpy as np
from LunarLanderConfig import *
# Save the state of the network to a .h5 file
import h5py
import argparse
import csv
class LunarLanderDQNAgent:
# Initialise Agent
def __init__(self):
# render, test_model = self._args()
test_model = None
self.env = gym.make(ENVIRONMENT)
self.render = True
self.number_of_actions = self.env.action_space.n
self.number_of_observations = self.env.observation_space.shape[0]
self.epsilon = EPSILON # Exploration rate
self.epsilon_min = EPSILON_MIN
self.epsilon_decay = EPSILON_DECAY
self.gamma = GAMMA # Discount factor
self.alpha = ALPHA # Learning rate
self.batch_size = BATCH_SIZE
self.training_frequency = TRAINING_FREQUENCY
self.memory = deque(maxlen=MEMORY_SIZE)
self.model = self.build_model()
self.save_name = ENVIRONMENT+'/'+ENVIRONMENT
self.history = [('Episode', 'Score', 'Average score', 'Steps', 'Total steps')]
self.csv_loss_logger = CSVLogger(ENVIRONMENT + '/' + ENVIRONMENT + '_loss.csv', append=True, separator=',')
if test_model:
self.load_model(test_model)
self.test_agent()
else:
try:
os.mkdir(ENVIRONMENT)
except FileExistsError:
pass
self.train_agent()
# Initialise Neural Network model
def build_model(self):
model = Sequential()
model.add(Dense(512, input_dim=self.number_of_observations, activation=relu))
model.add(Dense(256, activation=relu))
model.add(Dense(128, activation=relu))
model.add(Dense(self.number_of_actions, activation=linear))
model.compile(loss="mse", optimizer=Adam(learning_rate=self.alpha), metrics=['accuracy'])
return model
# Append the properties of a given state and step in the future
def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
# Choose an action based on the exploration rate and current state of the network
def choose_action(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.number_of_actions)
q_values = self.model.predict(state)
return np.argmax(q_values[0])
def replay(self, total_steps):
if len(self.memory) < self.batch_size:
return
if total_steps % self.training_frequency == 0:
# Take a random sample of events from memory
minibatch = random.sample(self.memory, self.batch_size)
# Calculate Q values for each event and train the model
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
# Predict future reward
target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
# Map state to future reward
target_f = self.model.predict(state)
target_f[0][action] = target
# Train model
self.model.fit(state, target_f, epochs=1, verbose=0, callbacks=[self.csv_loss_logger])
self.epsilon *= self.epsilon_decay
self.epsilon = max(self.epsilon_min, self.epsilon)
def preprocess_state(self, state):
return np.reshape(state, (1, self.number_of_observations))
# Will probably add the train function here
def train_agent(self):
try:
score_history = deque(maxlen=CONSECUTIVE_EPISODES_TO_SOLVE)
total_steps = 0
for episode in range(EPISODES):
# Reset state at the beginning of game
state = self.preprocess_state(self.env.reset())
steps = 0
score = 0
while True: # Could also iterate to a maximum number of steps/ticks/frames in LunarLanderConfig
# Increment step count at each frame
steps += 1
total_steps += 1
# Render or not
if self.render:
self.env.render()
# Choose an action
action = self.choose_action(state)
# Take action and move to next step
next_state, reward, done, _ = self.env.step(action)
next_state = self.preprocess_state(next_state)
# Adjust score
score += reward
# Add to memory
self.remember(state, action, reward, next_state, done)
# Train with the experience
self.replay(total_steps)
if done:
score_history.append(score)
average_score = np.mean(score_history)
text = "[Episode {} of {}] - Score time this episode was {} with epsilon = {}".format(episode, EPISODES, score, self.epsilon)
text2 = "- Over last {} episodes: Min = {:.2f}, Mean = {:.2f}, Max = {:.2f}".format(CONSECUTIVE_EPISODES_TO_SOLVE, min(score_history), average_score, max(score_history))
text3 = "- Steps this episode: {}, Total steps: {}".format(steps, total_steps)
print(text + "\n" + (15 + len(str(episode)) + len(str(EPISODES)))*' '+ text2 + "\n" + (15 + len(str(episode)) + len(str(EPISODES)))*' '+ text3)
# Check if the goal has been reached
if average_score >= POINTS_TO_SOLVE:
print("Lunar Lander solved in {} episodes with an average of {} points".format((episode-CONSECUTIVE_EPISODES_TO_SOLVE), average_score))
filename = self.save_name + '_final.h5'
print("Saving model to {}".format(filename))
self.save_model(filename)
sys.exit()
break
# If not done, advance to the next state for the following iteration
state = next_state
# Save weights every 100 episodes
if episode % 100 == 0:
filename = self.save_name + '_' + str(episode) + '.h5'
self.save_model(filename)
sys.exit()
except KeyboardInterrupt:
# Catch Ctrl+C and end the game correctly
filename = self.save_name + '_final.h5'
print("Saving model to {}".format(filename))
self.save_model(filename)
self.exit()
except:
self.env.close()
sys.exit()
def test_agent(self):
try:
score_history = deque(maxlen=CONSECUTIVE_EPISODES_TO_SOLVE)
total_steps = 0
for episode in range(CONSECUTIVE_EPISODES_TO_SOLVE):
# Reset state at the beginning of game
state = self.preprocess_state(self.env.reset())
steps = 0
score = 0
while True: # Could also iterate to a maximum number of steps/ticks/frames in LunarLanderConfig
# Increment step count at each frame
steps += 1
total_steps += 1
# Render or not
if self.render:
self.env.render()
# Choose an action
action = self.choose_action(state)
# Take action and move to next step
next_state, reward, done, _ = self.env.step(action)
next_state = self.preprocess_state(next_state)
# Adjust score
score += reward
if done:
score_history.append(score)
average_score = np.mean(score_history)
text = "[Episode {} of 99] - Score time this episode was {} with epsilon = {}".format(episode, score, self.epsilon)
text2 = "- Over last {} episodes: Min = {:.2f}, Mean = {:.2f}, Max = {:.2f}".format(CONSECUTIVE_EPISODES_TO_SOLVE, min(score_history), average_score, max(score_history))
text3 = "- Steps this episode: {}, Total steps: {}".format(steps, total_steps)
print(text + "\n" + (17 + len(str(episode)))*' '+ text2 + "\n" + (17 + len(str(episode)))*' '+ text3)
break
# If not done, advance to the next state for the following iteration
state = next_state
self.env.close()
except :
print("Killing game")
self.env.close()
sys.exit()
def exit(self):
filename = self.save_name + '_history.csv'
print("Saving training history to {}".format(filename))
with open(filename, "w") as out:
csv_out = csv.writer(out)
for row in self.history:
csv_out.writerow(row)
print("Killing game")
self.env.close()
sys.exit()
def save_model(self, filename):
self.model.save_weights(filename)
def load_model(self, filename):
self.model.load_weights(filename)
# Argument parser for agent options
def _args(self):
parser = argparse.ArgumentParser()
parser.add_argument('-r', '--render', help="Render the game or not", default=True, type=bool)
parser.add_argument('-tm', '--test_model', help="Filename of model of weights to test the performance of", default=None)
args = parser.parse_args()
render = args.render
test_model = args.test_model
return render, test_model
if __name__ == "__main__":
LunarLanderDQNAgent()
概括
我让上面的代码顺利运行了几秒钟,然后渲染就像幻灯片一样,我目前不知道我用来识别原因的工具。我想知道是否有人可以清楚地看到冗余的代码部分并导致执行速度减慢,或者某些部分是否只是贪婪而应该被排除在外以提高性能和执行速度。
我正在运行 16Gb 的 RAM、i7-9700K 和 RTX 2070 Super,如果这有任何用处的话