当您想获取有关特定代码路径的性能数据时,您使用什么方法?
7 回答
这种方法有几个局限性,但我仍然觉得它非常有用。我会预先列出限制(我知道),让任何想要使用它的人自行承担风险。
- 我发布的原始版本过度报告了递归调用所花费的时间(如答案的评论中所指出的那样)。
- 它不是线程安全的,在我添加代码以忽略递归之前它不是线程安全的,现在它的线程安全性更低。
- 尽管如果多次调用(数百万次)它非常有效,但它会对结果产生可衡量的影响,因此您测量的范围将比您不测量的范围花费更长的时间。
当手头的问题不能证明分析我的所有代码是合理的,或者我从分析器获取一些我想要验证的数据时,我会使用这个类。基本上,它总结了您在特定块中花费的时间,并在程序结束时将其输出到调试流(可使用DbgView查看),包括执行代码的次数(当然还有平均花费的时间))。
#pragma once
#include <tchar.h>
#include <windows.h>
#include <sstream>
#include <boost/noncopyable.hpp>
namespace scope_timer {
class time_collector : boost::noncopyable {
__int64 total;
LARGE_INTEGER start;
size_t times;
const TCHAR* name;
double cpu_frequency()
{ // cache the CPU frequency, which doesn't change.
static double ret = 0; // store as double so devision later on is floating point and not truncating
if (ret == 0) {
LARGE_INTEGER freq;
QueryPerformanceFrequency(&freq);
ret = static_cast<double>(freq.QuadPart);
}
return ret;
}
bool in_use;
public:
time_collector(const TCHAR* n)
: times(0)
, name(n)
, total(0)
, start(LARGE_INTEGER())
, in_use(false)
{
}
~time_collector()
{
std::basic_ostringstream<TCHAR> msg;
msg << _T("scope_timer> ") << name << _T(" called: ");
double seconds = total / cpu_frequency();
double average = seconds / times;
msg << times << _T(" times total time: ") << seconds << _T(" seconds ")
<< _T(" (avg ") << average <<_T(")\n");
OutputDebugString(msg.str().c_str());
}
void add_time(__int64 ticks)
{
total += ticks;
++times;
in_use = false;
}
bool aquire()
{
if (in_use)
return false;
in_use = true;
return true;
}
};
class one_time : boost::noncopyable {
LARGE_INTEGER start;
time_collector* collector;
public:
one_time(time_collector& tc)
{
if (tc.aquire()) {
collector = &tc;
QueryPerformanceCounter(&start);
}
else
collector = 0;
}
~one_time()
{
if (collector) {
LARGE_INTEGER end;
QueryPerformanceCounter(&end);
collector->add_time(end.QuadPart - start.QuadPart);
}
}
};
}
// Usage TIME_THIS_SCOPE(XX); where XX is a C variable name (can begin with a number)
#define TIME_THIS_SCOPE(name) \
static scope_timer::time_collector st_time_collector_##name(_T(#name)); \
scope_timer::one_time st_one_time_##name(st_time_collector_##name)
好吧,我有两个代码片段。在伪代码中,它们看起来像(这是一个简化版本,我实际上使用的是QueryPerformanceFrequency):
第一个片段:
Timer timer = new Timer
timer.Start
第二个片段:
timer.Stop
show elapsed time
有点热键功夫,我可以说这段代码从我的 CPU 中偷走了多少时间。
我通过创建两个类来完成我的个人资料:cProfile
和cProfileManager
.
cProfileManager
将保存由cProfile
.
cProfile
具有以下要求:
cProfile
有一个初始化当前时间的构造函数。cProfile
有一个解构函数,它发送类存活的总时间到cProfileManager
要使用这些配置文件类,我首先创建一个cProfileManager
. 然后,我将要分析的代码块放在花括号内。在花括号内,我创建了一个cProfile
实例。当代码块结束时,cProfile
会将代码块完成所用的时间发送到cProfileManager
.
示例代码 这是代码示例(简化):
class cProfile
{
cProfile()
{
TimeStart = GetTime();
};
~cProfile()
{
ProfileManager->AddProfile (GetTime() - TimeStart);
}
float TimeStart;
}
要使用cProfile
,我会做这样的事情:
int main()
{
printf("Start test");
{
cProfile Profile;
Calculate();
}
ProfileManager->OutputData();
}
或这个:
void foobar()
{
cProfile ProfileFoobar;
foo();
{
cProfile ProfileBarCheck;
while (bar())
{
cProfile ProfileSpam;
spam();
}
}
}
技术说明
这段代码实际上滥用了C++中作用域、构造函数和解构函数的工作方式。cProfile
仅存在于块范围内(我们要测试的代码块)。一旦程序离开块范围,cProfile
记录结果。
其他增强功能
您可以在构造函数中添加一个字符串参数,这样您就可以执行以下操作: cProfile Profile("Profile for complex calculation");
您可以使用宏使代码看起来更干净(注意不要滥用它。与我们对语言的其他滥用不同,宏在使用时可能很危险)。
例子:
#define START_PROFILE cProfile Profile(); { #define END_PROFILE }
cProfileManager
可以检查一个代码块被调用了多少次。但是您需要代码块的标识符。第一个增强可以帮助识别块。这在您要分析的代码位于循环内的情况下(如第二个示例 aboe)很有用。您还可以添加代码块所用的平均、最快和最长执行时间。如果您处于调试模式,请不要忘记添加检查以跳过分析。
注意,以下都是专门为 Windows 编写的。
我还编写了一个计时器类,用于进行快速而肮脏的分析,它使用 QueryPerformanceCounter() 来获得高精度计时,但略有不同。当 Timer 对象超出范围时,我的计时器类不会转储经过的时间。相反,它将经过的时间累积到一个集合中。我添加了一个静态成员函数 Dump(),它创建了一个经过时间的表,按时间类别排序(在 Timer 的构造函数中指定为字符串)以及一些统计分析,例如平均经过时间、标准偏差、最大值和最小值。我还添加了一个 Clear() 静态成员函数,它可以清除集合并让您重新开始。
如何使用 Timer 类(伪代码):
int CInsertBuffer::Read(char* pBuf)
{
// TIMER NOTES: Avg Execution Time = ~1 ms
Timer timer("BufferRead");
: :
return -1;
}
样本输出:
Timer Precision = 418.0095 ps
=== Item Trials Ttl Time Avg Time Mean Time StdDev ===
AddTrade 500 7 ms 14 us 12 us 24 us
BufferRead 511 1:19.25 0.16 s 621 ns 2.48 s
BufferWrite 516 511 us 991 ns 482 ns 11 us
ImportPos Loop 1002 18.62 s 19 ms 77 us 0.51 s
ImportPosition 2 18.75 s 9.38 s 16.17 s 13.59 s
Insert 515 4.26 s 8 ms 5 ms 27 ms
recv 101 18.54 s 0.18 s 2603 ns 1.63 s
文件 Timer.inl :
#include <map>
#include "x:\utils\stlext\stringext.h"
#include <iterator>
#include <set>
#include <vector>
#include <numeric>
#include "x:\utils\stlext\algorithmext.h"
#include <math.h>
class Timer
{
public:
Timer(const char* name)
{
label = std::safe_string(name);
QueryPerformanceCounter(&startTime);
}
virtual ~Timer()
{
QueryPerformanceCounter(&stopTime);
__int64 clocks = stopTime.QuadPart-startTime.QuadPart;
double elapsed = (double)clocks/(double)TimerFreq();
TimeMap().insert(std::make_pair(label,elapsed));
};
static std::string Dump(bool ClipboardAlso=true)
{
static const std::string loc = "Timer::Dump";
if( TimeMap().empty() )
{
return "No trials\r\n";
}
std::string ret = std::formatstr("\r\n\r\nTimer Precision = %s\r\n\r\n", format_elapsed(1.0/(double)TimerFreq()).c_str());
// get a list of keys
typedef std::set<std::string> keyset;
keyset keys;
std::transform(TimeMap().begin(), TimeMap().end(), std::inserter(keys, keys.begin()), extract_key());
size_t maxrows = 0;
typedef std::vector<std::string> strings;
strings lines;
static const size_t tabWidth = 9;
std::string head = std::formatstr("=== %-*.*s %-*.*s %-*.*s %-*.*s %-*.*s %-*.*s ===", tabWidth*2, tabWidth*2, "Item", tabWidth, tabWidth, "Trials", tabWidth, tabWidth, "Ttl Time", tabWidth, tabWidth, "Avg Time", tabWidth, tabWidth, "Mean Time", tabWidth, tabWidth, "StdDev");
ret += std::formatstr("\r\n%s\r\n", head.c_str());
if( ClipboardAlso )
lines.push_back("Item\tTrials\tTtl Time\tAvg Time\tMean Time\tStdDev\r\n");
// dump the values for each key
{for( keyset::iterator key = keys.begin(); keys.end() != key; ++key )
{
time_type ttl = 0;
ttl = std::accumulate(TimeMap().begin(), TimeMap().end(), ttl, accum_key(*key));
size_t num = std::count_if( TimeMap().begin(), TimeMap().end(), match_key(*key));
if( num > maxrows )
maxrows = num;
time_type avg = ttl / num;
// compute mean
std::vector<time_type> sortedTimes;
std::transform_if(TimeMap().begin(), TimeMap().end(), std::inserter(sortedTimes, sortedTimes.begin()), extract_val(), match_key(*key));
std::sort(sortedTimes.begin(), sortedTimes.end());
size_t mid = (size_t)floor((double)num/2.0);
double mean = ( num > 1 && (num % 2) != 0 ) ? (sortedTimes[mid]+sortedTimes[mid+1])/2.0 : sortedTimes[mid];
// compute variance
double sum = 0.0;
if( num > 1 )
{
for( std::vector<time_type>::iterator timeIt = sortedTimes.begin(); sortedTimes.end() != timeIt; ++timeIt )
sum += pow(*timeIt-mean,2.0);
}
// compute std dev
double stddev = num > 1 ? sqrt(sum/((double)num-1.0)) : 0.0;
ret += std::formatstr(" %-*.*s %-*.*s %-*.*s %-*.*s %-*.*s %-*.*s\r\n", tabWidth*2, tabWidth*2, key->c_str(), tabWidth, tabWidth, std::formatstr("%d",num).c_str(), tabWidth, tabWidth, format_elapsed(ttl).c_str(), tabWidth, tabWidth, format_elapsed(avg).c_str(), tabWidth, tabWidth, format_elapsed(mean).c_str(), tabWidth, tabWidth, format_elapsed(stddev).c_str());
if( ClipboardAlso )
lines.push_back(std::formatstr("%s\t%s\t%s\t%s\t%s\t%s\r\n", key->c_str(), std::formatstr("%d",num).c_str(), format_elapsed(ttl).c_str(), format_elapsed(avg).c_str(), format_elapsed(mean).c_str(), format_elapsed(stddev).c_str()));
}
}
ret += std::formatstr("%s\r\n", std::string(head.length(),'=').c_str());
if( ClipboardAlso )
{
// dump header row of data block
lines.push_back("");
{
std::string s;
for( keyset::iterator key = keys.begin(); key != keys.end(); ++key )
{
if( key != keys.begin() )
s.append("\t");
s.append(*key);
}
s.append("\r\n");
lines.push_back(s);
}
// blow out the flat map of time values to a seperate vector of times for each key
typedef std::map<std::string, std::vector<time_type> > nodematrix;
nodematrix nodes;
for( Times::iterator time = TimeMap().begin(); time != TimeMap().end(); ++time )
nodes[time->first].push_back(time->second);
// dump each data point
for( size_t row = 0; row < maxrows; ++row )
{
std::string rowDump;
for( keyset::iterator key = keys.begin(); key != keys.end(); ++key )
{
if( key != keys.begin() )
rowDump.append("\t");
if( nodes[*key].size() > row )
rowDump.append(std::formatstr("%f", nodes[*key][row]));
}
rowDump.append("\r\n");
lines.push_back(rowDump);
}
// dump to the clipboard
std::string dump;
for( strings::iterator s = lines.begin(); s != lines.end(); ++s )
{
dump.append(*s);
}
OpenClipboard(0);
EmptyClipboard();
HGLOBAL hg = GlobalAlloc(GMEM_MOVEABLE, dump.length()+1);
if( hg != 0 )
{
char* buf = (char*)GlobalLock(hg);
if( buf != 0 )
{
std::copy(dump.begin(), dump.end(), buf);
buf[dump.length()] = 0;
GlobalUnlock(hg);
SetClipboardData(CF_TEXT, hg);
}
}
CloseClipboard();
}
return ret;
}
static void Reset()
{
TimeMap().clear();
}
static std::string format_elapsed(double d)
{
if( d < 0.00000001 )
{
// show in ps with 4 digits
return std::formatstr("%0.4f ps", d * 1000000000000.0);
}
if( d < 0.00001 )
{
// show in ns
return std::formatstr("%0.0f ns", d * 1000000000.0);
}
if( d < 0.001 )
{
// show in us
return std::formatstr("%0.0f us", d * 1000000.0);
}
if( d < 0.1 )
{
// show in ms
return std::formatstr("%0.0f ms", d * 1000.0);
}
if( d <= 60.0 )
{
// show in seconds
return std::formatstr("%0.2f s", d);
}
if( d < 3600.0 )
{
// show in min:sec
return std::formatstr("%01.0f:%02.2f", floor(d/60.0), fmod(d,60.0));
}
// show in h:min:sec
return std::formatstr("%01.0f:%02.0f:%02.2f", floor(d/3600.0), floor(fmod(d,3600.0)/60.0), fmod(d,60.0));
}
private:
static __int64 TimerFreq()
{
static __int64 freq = 0;
static bool init = false;
if( !init )
{
LARGE_INTEGER li;
QueryPerformanceFrequency(&li);
freq = li.QuadPart;
init = true;
}
return freq;
}
LARGE_INTEGER startTime, stopTime;
std::string label;
typedef std::string key_type;
typedef double time_type;
typedef std::multimap<key_type, time_type> Times;
// static Times times;
static Times& TimeMap()
{
static Times times_;
return times_;
}
struct extract_key : public std::unary_function<Times::value_type, key_type>
{
std::string operator()(Times::value_type const & r) const
{
return r.first;
}
};
struct extract_val : public std::unary_function<Times::value_type, time_type>
{
time_type operator()(Times::value_type const & r) const
{
return r.second;
}
};
struct match_key : public std::unary_function<Times::value_type, bool>
{
match_key(key_type const & key_) : key(key_) {};
bool operator()(Times::value_type const & rhs) const
{
return key == rhs.first;
}
private:
match_key& operator=(match_key&) { return * this; }
const key_type key;
};
struct accum_key : public std::binary_function<time_type, Times::value_type, time_type>
{
accum_key(key_type const & key_) : key(key_), n(0) {};
time_type operator()(time_type const & v, Times::value_type const & rhs) const
{
if( key == rhs.first )
{
++n;
return rhs.second + v;
}
return v;
}
private:
accum_key& operator=(accum_key&) { return * this; }
const Times::key_type key;
mutable size_t n;
};
};
文件 stringext.h(提供 formatstr() 函数):
namespace std
{
/* ---
Formatted Print
template<class C>
int strprintf(basic_string<C>* pString, const C* pFmt, ...);
template<class C>
int vstrprintf(basic_string<C>* pString, const C* pFmt, va_list args);
Returns :
# characters printed to output
Effects :
Writes formatted data to a string. strprintf() works exactly the same as sprintf(); see your
documentation for sprintf() for details of peration. vstrprintf() also works the same as sprintf(),
but instead of accepting a variable paramater list it accepts a va_list argument.
Requires :
pString is a pointer to a basic_string<>
--- */
template<class char_type> int vprintf_generic(char_type* buffer, size_t bufferSize, const char_type* format, va_list argptr);
template<> inline int vprintf_generic<char>(char* buffer, size_t bufferSize, const char* format, va_list argptr)
{
# ifdef SECURE_VSPRINTF
return _vsnprintf_s(buffer, bufferSize-1, _TRUNCATE, format, argptr);
# else
return _vsnprintf(buffer, bufferSize-1, format, argptr);
# endif
}
template<> inline int vprintf_generic<wchar_t>(wchar_t* buffer, size_t bufferSize, const wchar_t* format, va_list argptr)
{
# ifdef SECURE_VSPRINTF
return _vsnwprintf_s(buffer, bufferSize-1, _TRUNCATE, format, argptr);
# else
return _vsnwprintf(buffer, bufferSize-1, format, argptr);
# endif
}
template<class Type, class Traits>
inline int vstringprintf(basic_string<Type,Traits> & outStr, const Type* format, va_list args)
{
// prologue
static const size_t ChunkSize = 1024;
size_t curBufSize = 0;
outStr.erase();
if( !format )
{
return 0;
}
// keep trying to write the string to an ever-increasing buffer until
// either we get the string written or we run out of memory
while( bool cont = true )
{
// allocate a local buffer
curBufSize += ChunkSize;
std::ref_ptr<Type> localBuffer = new Type[curBufSize];
if( localBuffer.get() == 0 )
{
// we ran out of memory -- nice goin'!
return -1;
}
// format output to local buffer
int i = vprintf_generic(localBuffer.get(), curBufSize * sizeof(Type), format, args);
if( -1 == i )
{
// the buffer wasn't big enough -- try again
continue;
}
else if( i < 0 )
{
// something wierd happened -- bail
return i;
}
// if we get to this point the string was written completely -- stop looping
outStr.assign(localBuffer.get(),i);
return i;
}
// unreachable code
return -1;
};
// provided for backward-compatibility
template<class Type, class Traits>
inline int vstrprintf(basic_string<Type,Traits> * outStr, const Type* format, va_list args)
{
return vstringprintf(*outStr, format, args);
}
template<class Char, class Traits>
inline int stringprintf(std::basic_string<Char, Traits> & outString, const Char* format, ...)
{
va_list args;
va_start(args, format);
int retval = vstringprintf(outString, format, args);
va_end(args);
return retval;
}
// old function provided for backward-compatibility
template<class Char, class Traits>
inline int strprintf(std::basic_string<Char, Traits> * outString, const Char* format, ...)
{
va_list args;
va_start(args, format);
int retval = vstringprintf(*outString, format, args);
va_end(args);
return retval;
}
/* ---
Inline Formatted Print
string strprintf(const char* Format, ...);
Returns :
Formatted string
Effects :
Writes formatted data to a string. formatstr() works the same as sprintf(); see your
documentation for sprintf() for details of operation.
--- */
template<class Char>
inline std::basic_string<Char> formatstr(const Char * format, ...)
{
std::string outString;
va_list args;
va_start(args, format);
vstringprintf(outString, format, args);
va_end(args);
return outString;
}
};
文件 algorithmext.h(提供 transform_if() 函数):
/* ---
Transform
25.2.3
template<class InputIterator, class OutputIterator, class UnaryOperation, class Predicate>
OutputIterator transform_if(InputIterator first, InputIterator last, OutputIterator result, UnaryOperation op, Predicate pred)
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryOperation, class Predicate>
OutputIterator transform_if(InputIterator first, InputIterator last, OutputIterator result, BinaryOperation binary_op, Predicate pred)
Requires:
T is of type EqualityComparable (20.1.1)
op and binary_op have no side effects
Effects :
Assigns through every iterator i in the range [result, result + (last1-first1)) a new corresponding value equal to one of:
1: op( *(first1 + (i - result))
2: binary_op( *(first1 + (i - result), *(first2 + (i - result))
Returns :
result + (last1 - first1)
Complexity :
At most last1 - first1 applications of op or binary_op
--- */
template<class InputIterator, class OutputIterator, class UnaryFunction, class Predicate>
OutputIterator transform_if(InputIterator first,
InputIterator last,
OutputIterator result,
UnaryFunction f,
Predicate pred)
{
for (; first != last; ++first)
{
if( pred(*first) )
*result++ = f(*first);
}
return result;
}
template<class InputIterator1, class InputIterator2, class OutputIterator, class BinaryOperation, class Predicate>
OutputIterator transform_if(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
OutputIterator result,
BinaryOperation binary_op,
Predicate pred)
{
for (; first1 != last1 ; ++first1, ++first2)
{
if( pred(*first1) )
*result++ = binary_op(*first1,*first2);
}
return result;
}
代码分析器和优化一文包含大量有关 C++ 代码分析的信息,并且还有一个程序/类的免费下载链接,该链接将向您展示不同代码路径/方法的图形演示。
我有一个快速而简单的分析类,即使是最紧凑的内部循环也可以用于分析。重点是极轻的重量和简单的代码。该类分配一个固定大小的二维数组。然后我在各处添加“检查点”调用。在检查点 M 之后立即到达检查点 N 时,我将经过的时间(以微秒为单位)添加到数组项 [M,N]。由于这旨在分析紧密循环,因此我还有“迭代开始”调用来重置“最后一个检查点”变量。在测试结束时,dumpResults()
调用会生成所有相互跟随的检查点对的列表,以及已计入和未计入的总时间。
为此,我编写了一个名为nanotimer的简单跨平台类。目标是尽可能轻量级,以免通过添加太多指令而影响实际代码性能,从而影响指令缓存。它能够在 windows、mac 和 linux(可能还有一些 unix 变体)上获得微秒级的精度。
基本用法:
plf::timer t;
timer.start();
// stuff
double elapsed = t.get_elapsed_ns(); // Get nanoseconds
start() 还会在必要时重新启动计时器。“暂停”计时器可以通过存储经过时间来实现,然后在“取消暂停”时重新启动计时器,并在下次检查经过时间时添加到存储的结果中。