我在一月份问了一个类似的问题,@Miłosz Wieczór 很友好地回答了这个问题。现在,我面临着类似但不同的挑战,因为我需要在两个数据集(和)上同时拟合两个参数(和fc
)。我基本上需要找到最适合数据和的和的值。alpha
e_exp
iq_exp
fc
alpha
e_exp
iq_exp
import numpy as np
import math
from scipy.optimize import curve_fit, least_squares, minimize
f_exp = np.array([1, 1.6, 2.7, 4.4, 7.3, 12, 20, 32, 56, 88, 144, 250000])
e_exp = np.array([7.15, 7.30, 7.20, 7.25, 7.26, 7.28, 7.32, 7.25, 7.35, 7.34, 7.37, 11.55])
iq_exp = np.array([0.010, 0.009, 0.011, 0.011, 0.010, 0.012, 0.019, 0.027, 0.038, 0.044, 0.052, 0.005])
ezero = np.min(e_exp)
einf = np.max(e_exp)
ig_fc = 500
ig_alpha = 0.35
def CCRI(f_exp, fc, alpha):
x = np.log(f_exp/fc)
R = ezero + 1/2 * (einf - ezero) * (1 + np.sinh((1 - alpha) * x) / (np.cosh((1 - alpha) * x) + np.sin(1/2 * alpha * math.pi)))
I = 1/2 * (einf - ezero) * np.cos(alpha * math.pi / 2) / (np.cosh((1 - alpha) * x) + np.sin(alpha * math.pi / 2))
RI = np.sqrt(R ** 2 + I ** 2)
return RI
def CCiQ(f_exp, fc, alpha):
x = np.log(f_exp/fc)
R = ezero + 1/2 * (einf - ezero) * (1 + np.sinh((1 - alpha) * x) / (np.cosh((1 - alpha) * x) + np.sin(1/2 * alpha * math.pi)))
I = 1/2 * (einf - ezero) * np.cos(alpha * math.pi / 2) / (np.cosh((1 - alpha) * x) + np.sin(alpha * math.pi / 2))
iQ = I / R
return iQ
poptRI, pcovRI = curve_fit(CCRI, f_exp, e_exp, p0=(ig_fc, ig_alpha))
poptiQ, pcoviQ = curve_fit(CCiQ, f_exp, iq_exp, p0=(ig_fc, ig_alpha))
einf
,ezero
和f_exp
都是常数加上我需要优化的变量是ig_fc
and ig_alpha
,其中ig
代表初始猜测。在上面的代码中,我得到了两个不同的fc
和alpha
值,因为我独立解决了它们。fc
但是,我需要同时解决它们,以便alpha
通用。
- 有没有办法解决两个不同的函数来为
fc
和提供通用解决方案alpha
?