使用 Spacy,我根据我定义的语法规则从文本中提取方面意见对。规则基于 POS 标签和依赖标签,由token.pos_
和获取token.dep_
。以下是其中一种语法规则的示例。Japan is cool,
如果我通过它返回的句子[('Japan', 'cool', 0.3182)]
,其中的值代表 的极性cool
。
但是我不知道如何让它识别命名实体。例如,如果我通过Air France is cool
,我想得到,[('Air France', 'cool', 0.3182)]
但我目前得到的是[('France', 'cool', 0.3182)]
。
我查看了 Spacy 在线文档,我知道如何提取 NE( doc.ents
)。但我想知道使我的提取器工作的可能解决方法是什么。请注意,我不想要强制措施,例如连接字符串AirFrance
等Air_France
。
谢谢!
import spacy
nlp = spacy.load("en_core_web_lg-2.2.5")
review_body = "Air France is cool."
doc=nlp(review_body)
rule3_pairs = []
for token in doc:
children = token.children
A = "999999"
M = "999999"
add_neg_pfx = False
for child in children :
if(child.dep_ == "nsubj" and not child.is_stop): # nsubj is nominal subject
A = child.text
if(child.dep_ == "acomp" and not child.is_stop): # acomp is adjectival complement
M = child.text
# example - 'this could have been better' -> (this, not better)
if(child.dep_ == "aux" and child.tag_ == "MD"): # MD is modal auxiliary
neg_prefix = "not"
add_neg_pfx = True
if(child.dep_ == "neg"): # neg is negation
neg_prefix = child.text
add_neg_pfx = True
if (add_neg_pfx and M != "999999"):
M = neg_prefix + " " + M
if(A != "999999" and M != "999999"):
rule3_pairs.append((A, M, sid.polarity_scores(M)['compound']))
结果
rule3_pairs
>>> [('France', 'cool', 0.3182)]
期望的输出
rule3_pairs
>>> [('Air France', 'cool', 0.3182)]