我正在使用SP_LIME解释基于Lightgbm模型的客户流失预测结果。使用 LIME explainer.explain_instance 可以正常工作。
当我在同一个数据集上尝试 SP_LIME 时,第一部分
sp_obj = submodular_pick.SubmodularPick(explainer, data_source[model_lgbm.feature_name()].values, prob, num_features=5,num_exps_desired=10)
也可以正常工作。我变成了以下结果:
Intercept -0.017232899377758105
Prediction_local [0.50051062]
Right: 0.9748700776391315
Intercept -0.016903088945780256
Prediction_local [0.28478504]
Right: 0.5419652445350156
在绘制代码后出现以下错误:
[exp.as_pyplot_figure(label=1) for exp in sp_obj.sp_explanations]
KeyError Traceback (most recent call last)
<ipython-input-140-cf85e71256d4> in <module>
----> 1 [exp.as_pyplot_figure(label=1) for exp in sp_obj.sp_explanations]
<ipython-input-140-cf85e71256d4> in <listcomp>(.0)
----> 1 [exp.as_pyplot_figure(label=1) for exp in sp_obj.sp_explanations]
~\AppData\Local\Continuum\anaconda3\envs\use-case\lib\site-packages\lime\explanation.py in as_pyplot_figure(self, label, **kwargs)
167 """
168 import matplotlib.pyplot as plt
--> 169 exp = self.as_list(label=label, **kwargs)
170 fig = plt.figure()
171 vals = [x[1] for x in exp]
~\AppData\Local\Continuum\anaconda3\envs\use-case\lib\site-packages\lime\explanation.py in as_list(self, label, **kwargs)
141 """
142 label_to_use = label if self.mode == "classification" else self.dummy_label
--> 143 ans = self.domain_mapper.map_exp_ids(self.local_exp[label_to_use], **kwargs)
144 ans = [(x[0], float(x[1])) for x in ans]
145 return ans
KeyError: 1 ```
Any idea what is going on here?