MLR3真的很酷。我正在尝试调整正则化参数
searchspace_glmnet_trafo = ParamSet$new(list(
ParamDbl$new("regr.glmnet.lambda", log(0.01), log(10))
))
searchspace_glmnet_trafo$trafo = function(x, param_set) {
x$regr.glmnet.lambda = (exp(x$regr.glmnet.lambda))
x
}
但得到错误
glmnet::cv.glmnet(x = data, y = target, family = "gaussian", 中的错误:cv.glmnet 需要多个 lambda 值
下面是一个最小的非工作示例。任何帮助是极大的赞赏。
library(mlr3verse)
data("kc_housing", package = "mlr3data")
library(anytime)
dates = anytime(kc_housing$date)
kc_housing$date = as.numeric(difftime(dates, min(dates), units = "days"))
kc_housing$zipcode = as.factor(kc_housing$zipcode)
kc_housing$renovated = as.numeric(!is.na(kc_housing$yr_renovated))
kc_housing$has_basement = as.numeric(!is.na(kc_housing$sqft_basement))
kc_housing$id = NULL
kc_housing$price = kc_housing$price / 1000
kc_housing$yr_renovated = NULL
kc_housing$sqft_basement = NULL
lrnglm=lrn("regr.glmnet")
kc_housing
tsk = TaskRegr$new("sales", kc_housing, target = "price")
fencoder = po("encode", method = "treatment",
affect_columns = selector_type("factor"))
pipe = fencoder %>>% lrnglm
glearner = GraphLearner$new(pipe)
glearner$train(tsk)
searchspace_glmnet_trafo = ParamSet$new(list(
ParamDbl$new("regr.glmnet.lambda", log(0.01), log(10))
))
searchspace_glmnet_trafo$trafo = function(x, param_set) {
x$regr.glmnet.lambda = (exp(x$regr.glmnet.lambda))
x
}
inst = TuningInstance$new(
tsk, glearner,
rsmp("cv"), msr("regr.mse"),
searchspace_glmnet_trafo, term("evals", n_evals = 100)
)
gsearch = tnr("grid_search", resolution = 100)
gsearch$tune(inst)