我在带有 SKLearn 的 CPU 和使用 RAPID 的 GPU 上使用 RandomForestClassifier。我正在这两个库之间做一个关于使用 Iris 数据集加速和评分的基准测试(这是一个尝试,在未来,我将更改数据集以获得更好的基准测试,我从这两个库开始)。
问题是当我在 CPU 上测量分数时总是得到 1.0 的值,但是当我尝试在 GPU 上测量分数时,我得到一个介于 0.2 和 1.0 之间的变量值,我不明白为什么会发生这种情况。
首先,我使用的库版本是:
NumPy Version: 1.17.5
Pandas Version: 0.25.3
Scikit-Learn Version: 0.22.1
cuPY Version: 6.7.0
cuDF Version: 0.12.0
cuML Version: 0.12.0
Dask Version: 2.10.1
DaskCuda Version: 0+unknown
DaskCuDF Version: 0.12.0
MatPlotLib Version: 3.1.3
SeaBorn Version: 0.10.0
我用于 SKLearn RandomForestClassifier 的代码是:
# Read data in host memory
host_s_csv = pd.read_csv('./DataSet/iris.csv', header = 0, delimiter = ',') # Get complete CSV
host_s_data = host_s_csv.iloc[:, [0, 1, 2, 3]].astype('float32') # Get data columns
host_s_labels = host_s_csv.iloc[:, 4].astype('category').cat.codes # Get labels column
# Plot data
#sns.pairplot(host_s_csv, hue = 'variety');
# Split train and test data
host_s_data_train, host_s_data_test, host_s_labels_train, host_s_labels_test = sk_train_test_split(host_s_data, host_s_labels, test_size = 0.2, random_state = 0)
# Create RandomForest model
sk_s_random_forest = skRandomForestClassifier(n_estimators = 40,
max_depth = 16,
max_features = 1.0,
random_state = 10,
n_jobs = 1)
# Fit data in RandomForest
sk_s_random_forest.fit(host_s_data_train, host_s_labels_train)
# Predict data
sk_s_random_forest_labels_predicted = sk_s_random_forest.predict(host_s_data_test)
# Check score
print('accuracy_score: ', sk_accuracy_score(host_s_labels_test, sk_s_random_forest_labels_predicted))
我用于 RAPIDs RandomForestClassifier 的代码是:
# Read data in device memory
device_s_csv = cudf.read_csv('./DataSet/iris.csv', header = 0, delimiter = ',') # Get complete CSV
device_s_data = device_s_csv.iloc[:, [0, 1, 2, 3]].astype('float32') # Get data columns
device_s_labels = device_s_csv.iloc[:, 4].astype('category').cat.codes # Get labels column
# Plot data
#sns.pairplot(device_s_csv.to_pandas(), hue = 'variety');
# Split train and test data
device_s_data_train, device_s_data_test, device_s_labels_train, device_s_labels_test = cu_train_test_split(device_s_data, device_s_labels, train_size = 0.8, shuffle = True, random_state = 0)
# Use same data as host
#device_s_data_train = cudf.DataFrame.from_pandas(host_s_data_train)
#device_s_data_test = cudf.DataFrame.from_pandas(host_s_data_test)
#device_s_labels_train = cudf.Series.from_pandas(host_s_labels_train).astype('int32')
#device_s_labels_test = cudf.Series.from_pandas(host_s_labels_test).astype('int32')
# Create RandomForest model
cu_s_random_forest = cusRandomForestClassifier(n_estimators = 40,
max_depth = 16,
max_features = 1.0,
n_streams = 1)
# Fit data in RandomForest
cu_s_random_forest.fit(device_s_data_train, device_s_labels_train)
# Predict data
cu_s_random_forest_labels_predicted = cu_s_random_forest.predict(device_s_data_test)
# Check score
print('accuracy_score: ', cu_accuracy_score(device_s_labels_test, cu_s_random_forest_labels_predicted))
我正在使用的 iris 数据集的一个示例是:
你知道为什么会这样吗?两个模型设置相同,参数相同,......我不知道为什么分数之间存在如此大的差异。
谢谢你。