1

如何使用 Spacy 创建一个新的名称实体“病例”——在传染病病例数的上下文中,然后提取此病例数与病例基数之间的依赖关系。

例如,在以下文本中,“其中,1995 年 10 月 9 日至 11 月 5 日期间报告了 879 例病例,其中 4 人死亡。” 我们想提取“879”和“cases”

根据 Spacy 的示例文档页面上的“训练其他实体类型”的代码:

https://spacy.io/usage/examples#information-extraction

我使用他们现有的预训练“en_core_web_sm”英文模型,成功训练了一个名为“CASES”的附加实体:

from __future__ import unicode_literals, print_function

import plac
import random
from pathlib import Path
import spacy
from spacy.util import minibatch, compounding

LABEL = "CASES"

TRAIN_DATA = results_ent2[0:400]

def main(model="en_core_web_sm", new_model_name="cases", output_dir='data3', n_iter=30):
    random.seed(0)
    if model is not None:
        nlp = spacy.load(model)  # load existing spaCy model
        print("Loaded model '%s'" % model)
    else:
        nlp = spacy.blank("en")  # create blank Language class
        print("Created blank 'en' model")
    # Add entity recognizer to model if it's not in the pipeline
    # nlp.create_pipe works for built-ins that are registered with spaCy
    if "ner" not in nlp.pipe_names:
        ner = nlp.create_pipe("ner")
        nlp.add_pipe(ner)
    # otherwise, get it, so we can add labels to it
    else:
        ner = nlp.get_pipe("ner")

    ner.add_label(LABEL)  # add new entity label to entity recognizer
    # Adding extraneous labels shouldn't mess anything up
    if model is None:
        optimizer = nlp.begin_training()
    else:
        optimizer = nlp.resume_training()
    move_names = list(ner.move_names)
    # get names of other pipes to disable them during training
    pipe_exceptions = ["ner", "trf_wordpiecer", "trf_tok2vec"]
    other_pipes = [pipe for pipe in nlp.pipe_names if pipe not in pipe_exceptions]
    with nlp.disable_pipes(*other_pipes):  # only train NER
        sizes = compounding(1.0, 4.0, 1.001)
        # batch up the examples using spaCy's minibatch
        for itn in range(n_iter):
            random.shuffle(TRAIN_DATA)
            batches = minibatch(TRAIN_DATA, size=sizes)
            losses = {}
            for batch in batches:
                texts, annotations = zip(*batch)
                nlp.update(texts, annotations, sgd=optimizer, drop=0.35, losses=losses)
            print("Losses", losses)

    # test the trained model   

    test_text = "There were 100 confirmed cases?"
    doc = nlp(test_text)
    print("Entities in '%s'" % test_text)F
    for ent in doc.ents:
        print(ent.label_, ent.text)

    # save model to output directory
    if output_dir is not None:
        output_dir = Path(output_dir)
        if not output_dir.exists():
            output_dir.mkdir()
        nlp.meta["name"] = new_model_name  # rename model
        nlp.to_disk(output_dir)
        print("Saved model to", output_dir)

        # test the saved model
        print("Loading from", output_dir)
        nlp2 = spacy.load(output_dir)
        # Check the classes have loaded back consistently
        assert nlp2.get_pipe("ner").move_names == move_names
        doc2 = nlp2(test_text)
        for ent in doc2.ents:
            print(ent.label_, ent.text)

main()

测试输出:

test_text = 'Of these, 879 cases with 4 deaths were reported for the period 9 October to 5 November 1995. John was infected. It cost $500'
doc = nlp(test_text)
print("Entities in '%s'" % test_text)
for ent in doc.ents:
    print(ent.label_, ent.text)

我们得到一个结果

Entities in 'Of these, 879 cases with 4 deaths were reported for the period 9 October to 5 November 1995. John was infected. It cost $500'
CARDINAL 879
CASES cases
CARDINAL 4
CARDINAL 9
CARDINAL 5
CARDINAL $500

模型已保存,可以从上述文字中正确识别出 CASES。

我的目标是从新闻文章中提取给定疾病/病毒的病例数,然后再提取死亡人数。

我现在使用这个新创建的模型试图找到 CASES 和 CARDINAL 之间的依赖关系:

再次使用 Spacy 的示例

https://spacy.io/usage/examples#new-entity-type

'训练 spaCy 的依赖解析器'

import plac
import spacy


TEXTS = [
    "Net income was $9.4 million compared to the prior year of $2.7 million. I have 100,000 cases",
    "Revenue exceeded twelve billion dollars, with a loss of $1b.",
    "Of these, 879 cases with 4 deaths were reported for the period 9 October to 5 November 1995. John was infected. It cost $500"
]


def main(model="data3"):
    nlp = spacy.load(model)
    print("Loaded model '%s'" % model)
    print("Processing %d texts" % len(TEXTS))

    for text in TEXTS:
        doc = nlp(text)
        relations = extract_currency_relations(doc)
        for r1, r2 in relations:
            print("{:<10}\t{}\t{}".format(r1.text, r2.ent_type_, r2.text))


def filter_spans(spans):
    # Filter a sequence of spans so they don't contain overlaps
    # For spaCy 2.1.4+: this function is available as spacy.util.filter_spans()
    get_sort_key = lambda span: (span.end - span.start, -span.start)
    sorted_spans = sorted(spans, key=get_sort_key, reverse=True)
    result = []
    seen_tokens = set()
    for span in sorted_spans:
        # Check for end - 1 here because boundaries are inclusive
        if span.start not in seen_tokens and span.end - 1 not in seen_tokens:
            result.append(span)
        seen_tokens.update(range(span.start, span.end))
    result = sorted(result, key=lambda span: span.start)
    return result


def extract_currency_relations(doc):
    # Merge entities and noun chunks into one token
    spans = list(doc.ents) + list(doc.noun_chunks)
    spans = filter_spans(spans)
    with doc.retokenize() as retokenizer:
        for span in spans:
            retokenizer.merge(span)

    relations = []
    for money in filter(lambda w: w.ent_type_ == "MONEY", doc):
        if money.dep_ in ("attr", "dobj"):
            subject = [w for w in money.head.lefts if w.dep_ == "nsubj"]
            if subject:
                subject = subject[0]
                relations.append((subject, money))
        elif money.dep_ == "pobj" and money.head.dep_ == "prep":
            relations.append((money.head.head, money))
    return relations


main()

输出如下,没有依赖检测。就好像模型失去了这种能力,同时保留了检测命名实体的能力。或者,也许某种设置已被关闭?

Loaded model 'data3'
Processing 3 texts

如果我使用原始的预训练模型“en_core_web_sm”,结果是:

Processing 3 texts
Net income  MONEY   $9.4 million
the prior year  MONEY   $2.7 million
Revenue     MONEY   twelve billion dollars
a loss      MONEY   1b

这与 Spacy 示例页面上模型的输出相同。

有人知道发生了什么,为什么我的新模型(在原始 Spacy 'en_core_web_sm' 上使用迁移学习)现在无法在此示例中找到依赖项?

编辑:

如果我使用更新后的训练模型,它可以检测到新实体“案例”和基数“100,000”,但是它失去了检测金钱和日期的能力。

当我训练模型时,我训练了数千个句子,使用基本模型 en_core_web_sm 本身来检测所有实体并标记它们,以避免模型“忘记”旧实体。

在此处输入图像描述

4

2 回答 2

0

如果您希望他们俩都在 sm 的 ner 之后将该 ner 作为管道添加到 sm 模型,这只是一种方法。

于 2021-08-02T10:36:38.390 回答
0

据我说,如果我看到原文

净收入为 940 万美元,而上一年为 270 万美元。我有100,000个案例

Spacy 预训练模型返回正确的货币、日期和基数,它们是 spacy 预定义的实体标签,但是当您运行自定义模型data_new时,您只会得到案例和基数作为实体标签,而不是货币和日期。

这样做的原因是,当您使用自定义数据训练 spacy 模型时,您仅注释了与 cardinal 和 case 对应的文本,并跳过了其他 spacy 预训练标签,例如 date、money、loc、org 和 norp。在这种情况下,引入了灾难性遗忘。请从这个spacy 链接中阅读这样的概念。

我的推荐

  • 在注释过程中,应该为金钱、日期、红衣主教、箱子和其他你需要的东西提供平衡的标签。对于实时的整体平衡是不可能的,但尽可能多地尝试。
于 2021-04-10T17:59:49.010 回答