split
首先对所有三元组使用列表推导和展平:
df = pd.DataFrame({'Column2':["if you think she cute now you if uh yeah just",
'you think she uh yeah just a fax']})
from nltk import trigrams
L = [x for x in df['Column2'] for x in trigrams(x.split())]
print (L)
[('if', 'you', 'think'), ('you', 'think', 'she'), ('think', 'she', 'cute'),
('she', 'cute', 'now'), ('cute', 'now', 'you'), ('now', 'you', 'if'),
('you', 'if', 'uh'), ('if', 'uh', 'yeah'), ('uh', 'yeah', 'just'),
('you', 'think', 'she'), ('think', 'she', 'uh'), ('she', 'uh', 'yeah'),
('uh', 'yeah', 'just'), ('yeah', 'just', 'a'), ('just', 'a', 'fax')]
然后按以下方式计算元组collections.Counter
:
from collections import Counter
c = Counter(L)
print (c)
Counter({('you', 'think', 'she'): 2, ('uh', 'yeah', 'just'): 2, ('if', 'you', 'think'): 1,
('think', 'she', 'cute'): 1, ('she', 'cute', 'now'): 1, ('cute', 'now', 'you'): 1,
('now', 'you', 'if'): 1, ('you', 'if', 'uh'): 1, ('if', 'uh', 'yeah'): 1,
('think', 'she', 'uh'): 1, ('she', 'uh', 'yeah'): 1,
('yeah', 'just', 'a'): 1, ('just', 'a', 'fax'): 1})
对于最高值,请使用collections.Counter.most_common
:
top = c.most_common(5)
print (top)
[(('you', 'think', 'she'), 2), (('uh', 'yeah', 'just'), 2),
(('if', 'you', 'think'), 1), (('think', 'she', 'cute'), 1),
(('she', 'cute', 'now'), 1)]