0

只是好奇,但我正在调试 gensim 的 FastText 代码以复制词汇表外(OOV)单词的实现,但我无法完成它。因此,我正在遵循的过程是用玩具语料库训练一个小型模型,然后比较词汇表中单词的结果向量。这意味着如果整个过程没问题,输出数组应该是相同的。

这是我用于测试的代码:

from gensim.models import FastText
import numpy as np
# Default gensim's function for hashing ngrams
from gensim.models._utils_any2vec import ft_hash_bytes

# Toy corpus
sentences = [['hello', 'test', 'hello', 'greeting'],
             ['hey', 'hello', 'another', 'test']]

# Instatiate FastText gensim's class
ft = FastText(sg=1, size=5, min_count=1, \
window=2, hs=0, negative=20, \
seed=0, workers=1, bucket=100, \
min_n=3, max_n=4)

# Build vocab
ft.build_vocab(sentences)

# Fit model weights (vectors_ngram)
ft.train(sentences=sentences, total_examples=ft.corpus_count, epochs=5)

# Save model
ft.save('./ft.model')
del ft

# Load model
ft = FastText.load('./ft.model')

# Generate ngrams for test-word given min_n=3 and max_n=4
encoded_ngrams = [b"<he", b"<hel", b"hel", b"hell", b"ell", b"ello", b"llo", b"llo>", b"lo>"]
# Hash ngrams to its corresponding index, just as Gensim does
ngram_hashes = [ft_hash_bytes(n) % 100 for n in encoded_ngrams]
word_vec = np.zeros(5, dtype=np.float32)
for nh in ngram_hashes:
    word_vec += ft.wv.vectors_ngrams[nh]

# Compare both arrays
print(np.isclose(ft.wv['hello'], word_vec))

对于比较数组的每个维度,此脚本的输出都是 False。

如果有人能指出我是否遗漏了什么或做错了什么,那就太好了。提前致谢!

4

1 回答 1

0

一个完整词的 FastText 词向量的计算不仅其字符 n-gram 向量的总和,而且是一个原始的完整词向量,该向量也针对词汇中的词进行了训练。

您从ft.wv[word]已知单词返回的完整单词向量已经预先计算了这种组合。adjust_vectors()有关此完整计算的示例,请参见方法:

https://github.com/RaRe-Technologies/gensim/blob/68ec5b8ed7f18e75e0b13689f4da53405ef3ed96/gensim/models/keyedvectors.py#L2282

原始全词向量位于对象的数组.vectors_vocabmodel.wv

(如果这还不足以解决问题:确保您使用的是最新的gensim,因为最近有许多 FT 修复。并且,确保您的 ngram-hashes 列表与ft_ngram_hashes()库方法的输出相匹配——如果不是,您的手动 ngram-list-creation 和随后的散列可能会做一些不同的事情。)

于 2020-03-04T18:02:19.553 回答