6

当我对 zarr 数据和 parquet 数据使用 dask 运行基本相同的计算时,基于 zarr 的计算明显更快。为什么?是不是因为我在创建镶木地板文件时做错了什么?

我已经在 jupyter 笔记本中用假数据(见下文)复制了这个问题,以说明我所看到的行为类型。我很感激任何人对为什么基于 zarr 的计算比基于镶木地板的计算快几个数量级的任何见解。

我在现实生活中使用的数据是地球科学模型数据。特定的数据参数并不重要,但可以将每个参数视为具有纬度、经度和时间维度的数组。

要生成 zarr 文件,我只需写出我的参数的多维结构及其维度。

为了生成镶木地板,我首先将 3-D 参数数组“展平”为 1-D 数组,该数组成为我数据框中的单列。然后,我添加纬度、经度和时间列,然后将数据框写为镶木地板。


此单元格包含其余代码所需的所有导入:

import pandas as pd
import numpy as np
import xarray as xr
import dask
import dask.array as da
import intake
from textwrap import dedent

该单元生成虚假数据文件,总大小超过 3 GB:

def build_data(lat_resolution, lon_resolution, ntimes):
    """Build a fake geographical dataset with ntimes time steps and 
       resolution lat_resolution x lon_resolution"""
    lats = np.linspace(-90.0+lat_resolution/2,
                       90.0-lat_resolution/2,
                       np.round(180/lat_resolution))
    lons = np.linspace(-180.0+lon_resolution/2,
                       180-lon_resolution/2,
                       np.round(360/lon_resolution))
    times = np.arange(start=1,stop=ntimes+1)

    data = np.random.randn(len(lats),len(lons),len(times))
    return lats,lons,times,data

def create_zarr_from_data_set(lats,lons,times,data,zarr_dir):
    """Write zarr from a data set corresponding to the data passed in."""
    dar = xr.DataArray(data,
                       dims=('lat','lon','time'),
                       coords={'lat':lats,'lon':lons,'time':times},
                       name="data")
    ds = xr.Dataset({'data':dar,
                     'lat':('lat',lats),
                     'lon':('lon',lons),
                     'time':('time',times)})
    ds.to_zarr(zarr_dir)

def create_parquet_from_data_frame(lats,lons,times,data,parquet_file):
    """Write a parquet file from a dataframe corresponding to the data passed in."""
    total_points = len(lats)*len(lons)*len(times)

    # Flatten the data array
    data_flat = np.reshape(data,(total_points,1))

    # use meshgrid to create the corresponding latitude, longitude, and time 
    # columns
    mesh = np.meshgrid(lats,lons,times,indexing='ij')
    lats_flat = np.reshape(mesh[0],(total_points,1))
    lons_flat = np.reshape(mesh[1],(total_points,1))
    times_flat = np.reshape(mesh[2],(total_points,1))

    df = pd.DataFrame(data = np.concatenate((lats_flat,
                                             lons_flat,
                                             times_flat, 
                                             data_flat),axis=1), 
                      columns = ["lat","lon","time","data"])
    df.to_parquet(parquet_file,engine="fastparquet")

def create_fake_data_files():
    """Create zarr and parquet files with fake data"""
    zarr_dir = "zarr"
    parquet_file = "data.parquet"

    lats,lons,times,data = build_data(0.1,0.1,31)
    create_zarr_from_data_set(lats,lons,times,data,zarr_dir)
    create_parquet_from_data_frame(lats,lons,times,data,parquet_file)

    with open("data_catalog.yaml",'w') as f:
        catalog_str = dedent("""\
            sources:
              zarr:
                args:
                  urlpath: "./{}"
                description: "data in zarr format"
                driver: intake_xarray.xzarr.ZarrSource
                metadata: {{}}
              parquet:
                args:
                  urlpath: "./{}"
                description: "data in parquet format"
                driver: parquet
        """.format(zarr_dir,parquet_file))
        f.write(catalog_str)


##
# Generate the fake data
##
create_fake_data_files()

我对 parquet 和 zarr 文件运行了几种不同类型的计算,但在此示例中为简单起见,我将仅在特定时间、纬度和经度中提取单个参数值。

该单元为计算构建 zarr 和 parquet 有向无环图 (DAG):

# pick some arbitrary point to pull out of the data
lat_value = -0.05
lon_value = 10.95
time_value = 5

# open the data
cat = intake.open_catalog("data_catalog.yaml")
data_zarr = cat.zarr.to_dask()
data_df = cat.parquet.to_dask()

# build the DAG for getting a single point out of the zarr data
time_subset = data_zarr.where(data_zarr.time==time_value,drop=True)
lat_condition = da.logical_and(time_subset.lat < lat_value + 1e-9, time_subset.lat > lat_value - 1e-9)
lon_condition = da.logical_and(time_subset.lon < lon_value + 1e-9, time_subset.lon > lon_value - 1e-9)
geo_condition = da.logical_and(lat_condition,lon_condition)
zarr_subset = time_subset.where(geo_condition,drop=True)

# build the DAG for getting a single point out of the parquet data
parquet_subset = data_df[(data_df.lat > lat_value - 1e-9) & 
                         (data_df.lat < lat_value + 1e-9) &
                         (data_df.lon > lon_value - 1e-9) & 
                         (data_df.lon < lon_value + 1e-9) &
                         (data_df.time == time_value)]

当我针对每个 DAG 的计算运行时间时,我得到的时间完全不同。基于 zarr 的子集需要不到一秒的时间。基于镶木地板的子集需要 15-30 秒。

此单元格进行基于 zarr 的计算:

%%time
zarr_point = zarr_subset.compute()

基于Zarr的计算时间:

CPU times: user 6.19 ms, sys: 5.49 ms, total: 11.7 ms
Wall time: 12.8 ms

此单元格进行基于镶木地板的计算:

%%time
parquet_point = parquet_subset.compute()

基于 Parquet 的计算时间:

CPU times: user 18.2 s, sys: 28.1 s, total: 46.2 s
Wall time: 29.3 s

如您所见,基于 zarr 的计算要快得多。为什么?

4

1 回答 1

7

很高兴看到fastparquetzarrintake用于同一个问题!

TL;DR 这里是:使用适合您任务的正确数据模型。

另外,值得指出的是,zarr 数据集为 1.5GB,blosc/lz4 压缩为 512 个块,parquet 数据集为 1.8GB,snappy 压缩为 5 个块,其中压缩都是默认值。随机数据不能很好地压缩,坐标可以。

zarr 是一种面向数组的格式,可以在任何维度上分块,这意味着,要读取单个点,您只需要元数据(非常简短的文本)和包含它的一个块 - 这需要在这种情况下未压缩。数据块的索引是隐式的。

parquet 是一种面向列的格式。要找到特定点,您可以根据每个块的最小/最大列元数据忽略一些块,具体取决于坐标列的组织方式,然后为随机数据加载列块并解压缩。您将需要自定义逻辑才能选择块以同时加载到多个列上,这是 Dask 当前未实现的(如果不仔细重新排序数据就不可能实现)。parquet 的元数据比 zarr 大得多,但在这种情况下两者都无关紧要 - 如果您有很多变量或更多坐标,这可能会成为 parquet 的额外问题。

在这种情况下,zarr 的随机访问速度会快得多,但读取所有数据并没有根本不同,因为两者都必须加载磁盘上的所有字节并解压缩为浮点数,并且在这两种情况下,坐标数据加载速度都很快。但是,未压缩数据帧的内存表示比未压缩数组大得多,因为现在每个坐标的数组都具有与随机数据相同的点数,而不是每个坐标的 1D 小数组;另外,通过索引小数组以在数组情况下获得正确的坐标,并通过比较数据帧情况下每个单点的每个纬度/经度值来找到特定点。

于 2020-02-27T19:05:24.080 回答