3

我正在使用组级预测器拟合多级逻辑回归模型。我通过 R 使用 JAGS。当我将模型与包相匹配时,我会得到不同的runjags行为R2Jags

我试图编写一个可重现的示例来显示该问题。下面,我模拟来自二项式模型的数据,将数据索引到 8 个图和 2 个块,然后拟合多级逻辑回归以恢复下面代码中的成功概率 (b1b2)。滚动到底部以查看两个配合的摘要。

我的问题是:

  1. 为什么这两个拟合的后验不同?我使用相同的数据,单个模型规范,并在每个之前设置随机数生成器。为什么后验的平均值不同,为什么Rhat值如此不同?
# -------------------------------------------------------------------
# Loading required packages
# -------------------------------------------------------------------
library(rjags) 
library(R2jags)
library(MCMCvis)

包版本信息:

jags.version()
[1] ‘4.3.0’

R2jags_0.5-7   MCMCvis_0.13.5 rjags_4-10
# -------------------------------------------------------------------
# Simulate data
# -------------------------------------------------------------------
set.seed(10)

N.plots = 8
N.blocks = 2
trials=400

n = rep(100,trials)
N=length(n)
plotReps=N/N.plots
blockReps=N/N.blocks

# Block 1
b1<-rep(c(.25,.75,.9,.1),each=plotReps)-.05
# Block 2
b2<-rep(c(.25,.75,.9,.1),each=plotReps)+.05

y = rbinom(trials, 100, p = c(b1,b2))

# vectors indexing plots and blocks
plot = rep(1:8,each=plotReps)
block = rep(1:2,each=blockReps)

# pass data to list for JAGS
data = list(
  y = y,
  n = n,
  N = length(n),
  plot = plot,
  block= block,
  N.plots = N.plots,
  N.blocks = N.blocks
)
# -------------------------------------------------------------------
# Code for JAGS model
# -------------------------------------------------------------------

modelString <- "model { 
  ## Priors

  # hyperpriors
  mu.alpha ~ dnorm(0, 0.0001)

  sigma.plot ~ dunif(0,100) 
  tau.plot <- 1 / sigma.plot^2

  sigma.block ~ dunif(0,100) 
  tau.block <- 1 / sigma.block^2

  # priors 
  for(i in 1:N.plots){     
    eps.plot[i]~dnorm(0,tau.plot)
  }

  for(i in 1:N.blocks){
    eps.block[i]~dnorm(0,tau.block)
  }

  # Likelihood
  for(i in 1:N){
    logit(p[i]) <- mu.alpha + eps.plot[plot[i]] + eps.block[block[i]]
    y[i] ~ dbin(p[i], n[i])

  }
}"
# -------------------------------------------------------------------
# Initial values
# -------------------------------------------------------------------
# set inits for rjags
inits = list(list(mu.alpha = 0,sigma.plot=2,sigma.block=2),
             list(mu.alpha = 0,sigma.plot=2,sigma.block=2),
             list(mu.alpha = 0,sigma.plot=2,sigma.block=2)) 

# set inits function for R2jags
initsFun<-function(){list(
  mu.alpha=0,
  sigma.plot=2,
  sigma.block=2
)}
# -------------------------------------------------------------------
# Set JAGS parameters and random seed
# -------------------------------------------------------------------
# scalars that specify the 
# number of iterations in the chain for adaptation
# number of iterations for burn-in
# number of samples in the final chain
n.adapt = 500
n.update = 5000
n.iterations = 1000
n.thin = 1
parsToMonitor = c("mu.alpha","sigma.plot","sigma.block","eps.plot","eps.block")
# -------------------------------------------------------------------
# Call to JAGS via rjags
# -------------------------------------------------------------------
set.seed(2)
# tuning (n.adapt)
jm = jags.model(textConnection(modelString), data = data, inits = inits,
                n.chains = length(inits), n.adapt = n.adapt)

# burn-in (n.update)
update(jm, n.iterations = n.update)

# chain (n.iter)
samples.rjags = coda.samples(jm, variable.names = c(parsToMonitor), n.iter = n.iterations, thin = n.thin)
# -------------------------------------------------------------------
# Call to JAGS via R2jags
# -------------------------------------------------------------------
set.seed(2)
samples.R2jags <-jags(data=data,inits=initsFun,parameters.to.save=parsToMonitor,model.file=textConnection(modelString),
                      n.thin=n.thin,n.chains=length(inits),n.burnin=n.adapt,n.iter=n.iterations,DIC=T)
# -------------------------------------------------------------------
# Summarize posteriors using MCMCvis
# -------------------------------------------------------------------
sum.rjags <- MCMCvis::MCMCsummary(samples.rjags,params=c("mu.alpha","eps.plot","sigma.plot","sigma.block","eps.block"))
sum.rjags

sum.R2jags2 <- MCMCvis::MCMCsummary(samples.R2jags,params=c("mu.alpha","eps.plot","sigma.plot","sigma.block","eps.block"))
sum.R2jags2

这是 rjags 拟合的输出:

                     mean         sd         2.5%         50%       97.5% Rhat n.eff
mu.alpha      0.07858079 21.2186737 -48.99286669 -0.04046538 45.16440893 1.11  4063
eps.plot[1]  -1.77570813  0.8605892  -3.45736942 -1.77762035 -0.02258692 1.00  2857
eps.plot[2]  -0.37359614  0.8614370  -2.07913650 -0.37581522  1.36611635 1.00  2846
eps.plot[3]   0.43387001  0.8612820  -1.24273657  0.42332033  2.20253810 1.00  2833
eps.plot[4]   1.31279883  0.8615840  -0.38750596  1.31179143  3.06307745 1.00  2673
eps.plot[5]  -1.34317034  0.8749558  -3.06843578 -1.34747145  0.44451006 1.00  2664
eps.plot[6]  -0.40064738  0.8749104  -2.13233876 -0.41530587  1.37910977 1.00  2677
eps.plot[7]   0.36515253  0.8738092  -1.35364716  0.35784379  2.15597251 1.00  2692
eps.plot[8]   1.71826293  0.8765952  -0.01057452  1.70627507  3.50314147 1.00  2650
sigma.plot    1.67540914  0.6244529   0.88895789  1.53080631  3.27418094 1.01   741
sigma.block  19.54287007 26.1348353   0.14556791  6.68959552 93.21927035 1.22    94
eps.block[1] -0.55924545 21.2126905 -46.34099332 -0.24261169 48.81435107 1.11  4009
eps.block[2]  0.35658731 21.2177540 -44.65998407  0.25801739 49.31921639 1.11  4457

这是 R2jags fit 的输出:

                   mean         sd         2.5%         50%       97.5% Rhat n.eff
mu.alpha     -0.09358847 19.9972601 -45.81215297 -0.03905447 47.32288503 1.04  1785
eps.plot[1]  -1.70448172  0.8954054  -3.41749845 -1.70817566  0.08187877 1.00  1141
eps.plot[2]  -0.30070570  0.8940527  -2.01982416 -0.30458798  1.46954632 1.00  1125
eps.plot[3]   0.50295713  0.8932038  -1.20985348  0.50458106  2.29271214 1.01  1156
eps.plot[4]   1.37862742  0.8950657  -0.34965321  1.37627777  3.19545411 1.01  1142
eps.plot[5]  -1.40421696  0.8496819  -3.10743244 -1.41880218  0.25843323 1.01  1400
eps.plot[6]  -0.45810643  0.8504694  -2.16755579 -0.47087931  1.20827684 1.01  1406
eps.plot[7]   0.30319019  0.8492508  -1.39045509  0.28668886  1.96325582 1.01  1500
eps.plot[8]   1.65474420  0.8500635  -0.03632306  1.63399429  3.29585024 1.01  1395
sigma.plot    1.66375532  0.6681285   0.88231891  1.49564854  3.45544415 1.04   304
sigma.block  20.64694333 23.0418085   0.41071589 11.10308188 85.56459886 1.09    78
eps.block[1] -0.45810120 19.9981027 -46.85060339 -0.33090743 46.27709625 1.04  1795
eps.block[2]  0.58896195 19.9552211 -46.39310677  0.28183123 46.57874408 1.04  1769

这是来自 2 次拟合的 mu.alpha 的跟踪图。首先,从 rjags 适合:

rjags fit 中 mu.alpha 的跟踪图

二、来自R2jags的合身:

来自 R2Jags 拟合的 mu.alpha 的跟踪图

4

2 回答 2

0

我很确定你的后验不同的原因是因为 Jags 不关心 R 代码中的种子集。

然而!虽然set.seed()rjags 直接对 Jags 没有任何作用,并且在通过 rjags 直接调用 Jags 时也没用,但当您使用 R2Jags 时它确实会传播。

让我们比较一下:

  • rjags 是一个较低级别的接口。如果您不提供随机生成器的选择,那么initsJags 中的种子将基于它们的初始化基于当前时间戳。
  • R2Jags 包装了 rjags 函数。( jags()R2Jags) 函数调用jags.model()(rjags)。如果您查看jags()函数的 R 代码,您将看到它使用 R 中的runif()函数为每个链生成一个种子。由于 Jags 种子依赖于 R 中runif()函数的输出,因此在 R 中设置种子将确保每次跑步时,您都会获得相同的 Jags 种子。
于 2020-06-23T01:07:19.433 回答
0

虽然部分问题与 缺乏收敛性有关mu.alpha,但另一个问题是两个包如何确定从后验分布中收集的样本数量。此外,update之后的调用jags.model应该是:

update(jm, n.iter = n.update)

代替

update(jm, n.iterations = n.update)

因为rjags您可以很容易地指定适应步骤、更新步骤和迭代步骤的数量。很samples.rjags明显,每个链都有一个后验长度n.iterations,总共(在这个例子中)3000 个样本(n.iterations* n.chains)。相反,R2jags::jags将采样后验的次数等于n.iter参数减去n.burnin参数。因此,正如您指定的那样,您有 1) 不包括n.update步骤R2jags::jags和 2) 仅对后部进行了总共 1500 次采样(每个链仅保留 500 个样本),而 3000 次来自rjags.

如果您想进行类似的老化并采样相同的次数,您可以改为运行:

samples.R2jags <-jags(
  data=data,
  inits=inits,
  parameters.to.save=parsToMonitor,
  model.file=textConnection(modelString),
  n.thin=n.thin,
  n.chains=length(inits),
  n.burnin=n.adapt + n.update ,
  n.iter=n.iterations +n.update + n.adapt,
  DIC=T
)

最后,默认R2jags加载模块而不加载。这可能会导致一些差异,因为使用的采样器可能不同(至少在这种情况下,因为您正在安装 glm)。您可以在调用之前通过调用加载 glm 模块。glmrjagsrjags::load.module('glm')jags.model

虽然这与问题本身无关,但我会i在每个循环的模型内的 for 循环中避免您(如果循环之间的迭代次数不同,请使用不同的字母):

modelString <- "model { 
  ## Priors

  # hyperpriors
  mu.alpha ~ dnorm(0, 0.0001)

  sigma.plot ~ dunif(0,100) 
  tau.plot <- 1 / sigma.plot^2

  sigma.block ~ dunif(0,100) 
  tau.block <- 1 / sigma.block^2

  # priors 
  for(i in 1:N.plots){     
    eps.plot[i]~dnorm(0,tau.plot)
  }

  for(j in 1:N.blocks){
    eps.block[j]~dnorm(0,tau.block)
  }

  # Likelihood
  for(k in 1:N){
    logit(p[k]) <- mu.alpha + eps.plot[plot[k]] + eps.block[block[k]]
    y[k] ~ dbin(p[k], n[k])

  }
}"
于 2020-02-20T16:47:56.927 回答