1

我正在尝试使用Hyperopt库优化一组参数。我按照本教程实现了代码。只要我将max_evals设置为少于 30 次,一切正常。当我将max_evals 设置为 30 时,在第 20 次迭代时出现以下错误:

Traceback(最近一次通话最后):文件“/Users/sulekahelmini/Documents/fyp/fyp_work/MLscripts/Optimizehyperopt.py”,第 149 行,在 trial=trials 中)文件“/Users/sulekahelmini/Documents/fyp/condaEnv/envConda /lib/python3.7/site-packages/hyperopt/fmin.py”,第 482 行,在 fmin show_progressbar=show_progressbar,文件“/Users/sulekahelmini/Documents/fyp/condaEnv/envConda/lib/python3.7/site- packages/hyperopt/base.py”,第 686 行,在 fmin show_progressbar=show_progressbar,文件“/Users/sulekahelmini/Documents/fyp/condaEnv/envConda/lib/python3.7/site-packages/hyperopt/fmin.py”中,第 509 行,在 fmin rval.exhaust() 文件“/Users/sulekahelmini/Documents/fyp/condaEnv/envConda/lib/python3.7/site-packages/hyperopt/fmin.py”中,第 330 行,在排气 self.run (自己。max_evals - n_done,block_until_done=self.asynchronous)文件“/Users/sulekahelmini/Documents/fyp/condaEnv/envConda/lib/python3.7/site-packages/hyperopt/fmin.py”,第 266 行,运行 new_ids,self .domain,试验,self.rstate.randint(2 ** 31 - 1)文件“/Users/sulekahelmini/Documents/fyp/condaEnv/envConda/lib/python3.7/site-packages/hyperopt/tpe.py”,第 939 行,建议 idxs,vals = pyll.rec_eval(posterior, memo=memo, print_node_on_error=False) File "/Users/sulekahelmini/Documents/fyp/condaEnv/envConda/lib/python3.7/site-packages/hyperopt/ pyll/base.py”,第 911 行,在 rec_eval rval = scope._impls[node.name](*args, **kwargs) 文件“/Users/sulekahelmini/Documents/fyp/condaEnv/envConda/lib/python3.7 /site-packages/hyperopt/tpe.py”,第 430 行,在adaptive_parzen_normal srtd_mus[:prior_pos] = mus[order[:prior_pos]] TypeError: only integer scalar arrays can be convert to a scalar index

下面显示的是我的代码,我在这里做错了什么?

from hyperopt import hp, tpe, fmin, Trials, STATUS_OK
import hyperopt.pyll.stochastic
import pandas as pd
import sys
import subprocess
import csv
import argparse


space={}
fileName="JVMFlags_GC_Com.csv"
isFirstRun="False"

def ConstructSpace(df):

    dependent= None
    for row in df.itertuples():

        if(row.Type == "int" or row.Type=="positive int"):
            if(not (pd.isnull(row.Range))):
                split_range = str(row.Range).split("/")
            else:
                if(sys.maxsize > 2**32):
                    split_range = str(row.OS_64).split("/")
                else:
                    split_range = str(row.OS_32).split("/")

            if(row.Name == "ms"):
                dependent = hp.uniform(row.Name,int(split_range[0]),int(split_range[1]))
                space[row.Name] = dependent
                continue
            elif(row.Name == "mx"):
                space[row.Name] = hp.uniform(row.Name, dependent, int(split_range[1]))
            else:
                space[row.Name] = hp.uniform(row.Name,int(split_range[0]),int(split_range[1]))

        elif(row.Type == "bool"):
            space[row.Name] = hp.choice(row.Name, [True,False])

        elif(row.Type =="choice"):
            split_range = str(row.Range).split("_")
            choice_list=[]
            for element in split_range:
                choice_list.append(element)
            space[row.Name] = hp.choice(row.Name, choice_list)


def WriteFlags(param):

    df = pd.read_csv(fileName)

    with open("flags.txt", "w") as flag_file:
        for row in df.itertuples():

            if(row.Type == "bool"):
                if(param[row.Name]):
                    flagName = "-XX:+"+row.Name
                else:
                    flagName = "-XX:-" + row.Name


            elif (row.Name == "ms" or row.Name == "mx"):
                tempVal= int(float(param[row.Name]))
                flagName = "-X" + row.Name + str(tempVal)
            elif(row.Type == "int" or row.Type=="positive int" or row.Type =="choice"):
                tempVal = int(float(param[row.Name]))
                flagName = "-XX:" + row.Name+"="+ str(tempVal)

            flag_file.write(flagName+" ")

def WriteCsv(param):

    df = pd.read_csv(fileName)
    latency_res = pd.read_csv("agg_test.csv")

    with open('temp_opt_res.csv', mode='a') as opt_file:
        writer = csv.writer(opt_file, delimiter=',')
        valuList=[]

        for row in df.itertuples():
            valuList.append(int(float(param[row.Name])))

        bottom = latency_res.tail(1)
        valuList.append(bottom["Average"].values[0])
        valuList.append(bottom["Median"].values[0])
        valuList.append(bottom["90% Line"].values[0])
        valuList.append(bottom["95% Line"].values[0])
        valuList.append(bottom["99% Line"].values[0])
        valuList.append(bottom["Error %"].values[0])
        valuList.append(bottom["Throughput"].values[0])
        writer.writerow(valuList)


def HyperparameterTuning(param):
    WriteFlags(param)
    subprocess.check_call(['./microwise.sh', isFirstRun])
    WriteCsv(param)
    latency_vals = pd.read_csv("agg_test.csv")
    bottom = latency_vals.tail(1)
    print(bottom["99% Line"].values[0])

    return {'loss': bottom["99% Line"].values[0], 'status': STATUS_OK}


if __name__ == "__main__":

    df = pd.read_csv(fileName)
    ConstructSpace(df)

    with open('temp_opt_res.csv', mode='w') as opt_file:
            writer = csv.writer(opt_file, delimiter=',')
            flagList = df['Name'].tolist()
            flagList.append("Average")
            flagList.append("Median")
            flagList.append("90%")
            flagList.append("95%")
            flagList.append("99%")
            flagList.append("Error%")
            flagList.append("Throughput")
            writer.writerow(flagList)

    # parser = argparse.ArgumentParser(description='Short sample app')
    # parser.add_argument('--fileName', action="store", dest='fileName')
    # parser.add_argument('--isFirstIteration', action="store", dest='isFirstIteration')
    # parser.add_argument('--isFirstRun', action="store", dest='isFirstRun')
    # args = parser.parse_args()
    #
    # fileName=args.fileName
    # isFirstIteration=args.isFirstIteration
    # isFirstRun=args.isFirstRun

    trials = Trials()
    best = fmin(fn=HyperparameterTuning,
                    space=space,
                    algo=tpe.suggest,
                    max_evals=30,
                    trials=trials)

    print (best)
4

1 回答 1

0

我和你有同样的问题。就我而言,它也发生在第 20 次迭代中。后来我发现这是因为从那次迭代开始,选择了一个新的输入变量组合,其中一个变量不是一个简单的数字。它可以是 1 值数组或列表。所以请检查您的输入变量。一旦改变,它将起作用。

于 2020-08-25T00:04:28.933 回答