1

我正在学习“图像分类的联邦学习”教程,但使用的是我自己的数据集和 resnet50。运行时出现此错误iterative_process.next

我相信这是由tf.data.Dataset.from_generator 我的代码引起的:


par1_train_data_dir = './par1/train'
par2_train_data_dir = './par2/train'
input_shape = (img_height, img_width, 3)

img_gen = ImageDataGenerator(preprocessing_function=preprocess_input)

ds_par1 = tf.data.Dataset.from_generator(
    img_gen.flow_from_directory,  args=[par1_train_data_dir,(img_height,img_width)],
    output_types=(tf.float32, tf.float32), 
    output_shapes=([batch_size,img_height,img_width,3], [batch_size,num_classes])
)
ds_par2 = tf.data.Dataset.from_generator(
    img_gen.flow_from_directory,  args=[par2_train_data_dir,(img_height,img_width)],
    output_types=(tf.float32, tf.float32), 
    output_shapes=([batch_size,img_height,img_width,3], [batch_size,num_classes])
)

dataset_dict={}
dataset_dict['1'] = ds_par1
dataset_dict['2'] = ds_par2

def create_tf_dataset_for_client_fn(client_id):
    return dataset_dict[client_id]

train_data = tff.simulation.ClientData.from_clients_and_fn(['1','2'],create_tf_dataset_for_client_fn)

def make_federated_data(client_data, client_ids):
    return [client_data.create_tf_dataset_for_client(x)
          for x in client_ids]

federated_train_data = make_federated_data(train_data, train_data.client_ids)

images, labels = next(img_gen.flow_from_directory(par1_train_data_dir,batch_size=batch_size,target_size=(img_height,img_width)))
sample_batch = (images,labels)

def create_compiled_keras_model():
    pretrain_model = tf.keras.applications.resnet.ResNet50(include_top=False, weights='imagenet', 
                                                input_tensor=tf.keras.layers.Input(shape=(img_height, 
                                                img_width, 3)), pooling=None)

    Inp = Input((img_height, img_width, 3))
    x = pretrain_model(Inp)

    x = GlobalAveragePooling2D()(x)
    x = Dense(1024, activation='relu')(x)
    predictions = Dense(10, activation='softmax')(x)
    model = Model(inputs=Inp, outputs=predictions,name='resnet50_transfer')    

    model.compile(
      loss=tf.keras.losses.categorical_crossentropy,
      optimizer=tf.keras.optimizers.SGD(learning_rate=0.02))
    return model

def model_fn():
    keras_model = create_compiled_keras_model()
    return tff.learning.from_compiled_keras_model(keras_model, sample_batch)

iterative_process = tff.learning.build_federated_averaging_process(model_fn)
state = iterative_process.initialize()

NUM_ROUNDS = 11
for round_num in range(2, NUM_ROUNDS):
    state, metrics = iterative_process.next(state, federated_train_data)
    print('round {:2d}, metrics={}'.format(round_num, metrics))

我得到了错误 InvalidArgumentError: TypeError: endswith first arg must be bytes or a tuple of bytes, not str 这里是更多信息

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-48-b01b66dc0dcd> in <module>
      1 NUM_ROUNDS = 11
      2 for round_num in range(2, NUM_ROUNDS):
----> 3     state, metrics = iterative_process.next(state, federated_train_data)
      4     print('round {:2d}, metrics={}'.format(round_num, metrics))

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/utils/function_utils.py in __call__(self, *args, **kwargs)

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/utils/function_utils.py in pack_args(parameter_type, args, kwargs, context)

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/utils/function_utils.py in pack_args_into_anonymous_tuple(args, kwargs, type_spec, context)

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/reference_executor.py in ingest(self, arg, type_spec)
    627         intrinsic_defs.FEDERATED_MEAN.uri:
    628             self._federated_mean,
--> 629         intrinsic_defs.FEDERATED_BROADCAST.uri:
    630             self._federated_broadcast,
    631         intrinsic_defs.FEDERATED_COLLECT.uri:

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/reference_executor.py in to_representation_for_type(value, type_spec, callable_handler)
    239     else:
    240       return [
--> 241           to_representation_for_type(v, type_spec.member, callable_handler)
    242           for v in value
    243       ]

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/reference_executor.py in <listcomp>(.0)
    239     else:
    240       return [
--> 241           to_representation_for_type(v, type_spec.member, callable_handler)
    242           for v in value
    243       ]

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/reference_executor.py in to_representation_for_type(value, type_spec, callable_handler)
    198       if tf.executing_eagerly():
    199         return [
--> 200             to_representation_for_type(v, type_spec.element, callable_handler)
    201             for v in value
    202         ]

~/miniconda3/lib/python3.6/site-packages/tensorflow_federated/python/core/impl/reference_executor.py in <listcomp>(.0)
    197     if isinstance(value, tf.data.Dataset):
    198       if tf.executing_eagerly():
--> 199         return [
    200             to_representation_for_type(v, type_spec.element, callable_handler)
    201             for v in value

~/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/data/ops/iterator_ops.py in __next__(self)
    620 
    621   def __next__(self):  # For Python 3 compatibility
--> 622     return self.next()
    623 
    624   def _next_internal(self):

~/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/data/ops/iterator_ops.py in next(self)
    664     """Returns a nested structure of `Tensor`s containing the next element."""
    665     try:
--> 666       return self._next_internal()
    667     except errors.OutOfRangeError:
    668       raise StopIteration

~/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/data/ops/iterator_ops.py in _next_internal(self)
    649             self._iterator_resource,
    650             output_types=self._flat_output_types,
--> 651             output_shapes=self._flat_output_shapes)
    652 
    653       try:

~/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/ops/gen_dataset_ops.py in iterator_get_next_sync(iterator, output_types, output_shapes, name)
   2671   _ctx = _context._context or _context.context()
   2672   if _ctx is not None and _ctx._thread_local_data.is_eager:
-> 2673     try:
   2674       _result = _pywrap_tensorflow.TFE_Py_FastPathExecute(
   2675         _ctx._context_handle, _ctx._thread_local_data.device_name,

~/miniconda3/lib/python3.6/site-packages/six.py in raise_from(value, from_value)

InvalidArgumentError: TypeError: endswith first arg must be bytes or a tuple of bytes, not str
Traceback (most recent call last):

  File "/root/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 464, in get_iterator
    self._next_id += 1

KeyError: 2


During handling of the above exception, another exception occurred:


Traceback (most recent call last):

  File "/root/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/ops/script_ops.py", line 221, in __call__
    """

  File "/root/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 585, in generator_py_func

  File "/root/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 466, in get_iterator
    # NOTE(mrry): Explicitly create an array of `np.int64` because implicit

  File "/root/miniconda3/lib/python3.6/site-packages/keras_preprocessing/image/image_data_generator.py", line 540, in flow_from_directory
    interpolation=interpolation

  File "/root/miniconda3/lib/python3.6/site-packages/keras_preprocessing/image/directory_iterator.py", line 126, in __init__
    classes, filenames = res.get()

  File "/root/miniconda3/lib/python3.6/multiprocessing/pool.py", line 644, in get
    raise self._value

  File "/root/miniconda3/lib/python3.6/multiprocessing/pool.py", line 119, in worker
    result = (True, func(*args, **kwds))

  File "/root/miniconda3/lib/python3.6/site-packages/keras_preprocessing/image/utils.py", line 216, in _list_valid_filenames_in_directory
    for root, fname in valid_files:

  File "/root/miniconda3/lib/python3.6/site-packages/keras_preprocessing/image/utils.py", line 172, in _iter_valid_files
    if fname.lower().endswith('.tiff'):

TypeError: endswith first arg must be bytes or a tuple of bytes, not str


     [[{{node PyFunc}}]] [Op:IteratorGetNextSync]

我的环境

tensorboard==1.15.0
tensorcache==0.4.2
tensorflow==1.15.2
tensorflow-addons==0.6.0
tensorflow-estimator==1.15.1
tensorflow-federated==0.4.0

更新

我已经升级了 tf==2.1.0 和 tff==0.12.0,错误消失了,但是我又得到了一个错误。

似乎生成器到达了最后一批并且与输入形状不匹配。

但是 ImageDataGenerator 不需要设置drop_remainder。我的代码有什么问题吗?

InvalidArgumentError:  ValueError: `generator` yielded an element of shape (50, 224, 224, 3) where an element of shape (64, 224, 224, 3) was expected.
Traceback (most recent call last):

  File "/root/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/ops/script_ops.py", line 236, in __call__
    ret = func(*args)

  File "/root/miniconda3/lib/python3.6/site-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 825, in generator_py_func
    "of shape %s was expected." % (ret_array.shape, expected_shape))

ValueError: `generator` yielded an element of shape (50, 224, 224, 3) where an element of shape (64, 224, 224, 3) was expected.


     [[{{node PyFunc}}]]
     [[import/StatefulPartitionedCall_1/ReduceDataset]] [Op:__inference_wrapped_function_277930]

Function call stack:
wrapped_function
4

1 回答 1

1

TensorFlow Federated 版本0.4.0仅经过测试可与 TensorFlow 版本一起使用1.13.1(请参阅TensorFlow Federated 兼容性表)。是否可以升级到最新0.12.0版本的 TensorFlow Federated?

更新:

我相信您的分析是正确的,代码正在从生成器中设置一个数据集,该生成器期望生成精确的batch_size批次,但正在从img_gen.flow_from_directory生成器接收不同大小的批次。

在设置数据集期间,传递None批处理大小以指示批处理大小可能是可变的可能会起作用。

具体来说,改变这些行:

... = tf.data.Dataset.from_generator(
    img_gen.flow_from_directory,  args=[par1_train_data_dir,(img_height,img_width)],
    output_types=(tf.float32, tf.float32), 
    output_shapes=([batch_size,img_height,img_width,3], [batch_size,num_classes])
)

到:

... = tf.data.Dataset.from_generator(
    img_gen.flow_from_directory,  args=[par1_train_data_dir,(img_height,img_width)],
    output_types=(tf.float32, tf.float32), 
    output_shapes=([None,img_height,img_width,3], [None,num_classes])
)
于 2020-02-14T05:00:16.680 回答