26

glLineStipple已在最新的 OpenGL API 中弃用。它用什么代替?如果不更换,如何获得类似的效果?(我当然不想使用兼容性配置文件......)

4

3 回答 3

28

Sorry, it hasn't been replaced with anything. The first idea coming to my mind for emulating it would be the geometry shader. You feed the geometry shader with a line, compute its screen space length and based on that you generate a variable number of sub lines between its start and end vertex.


EDIT: Perhaps you could also use a 1D texture with the alpha (or red) channel encoding the pattern as 0.0 (no line) or 1.0 (line) and then have the lines texture coordinate go from 0 to 1 and in the fragment chader you make a simple alpha test, discarding fragments with alpha below some threshold. You can facilitate the geometry shader to generate your line texCoords, as otherwise you need different vertices for every line. This way you can also make the texCoord dependent on the screen space length of the line.

The whole thing get's more difficult if you draw triangles (using polygon mode GL_LINE). Then you have to do the triangle-line transformation yourself in the geometry shader, putting in triangles and putting out lines (that could also be a reason for deprecating polygon mode in the future, if it hasn't already).


EDIT: Although I believe this question abandomned, I have made a simple shader triple for the second approach. It's just a minimal solution, feel free to add custom features yourself. I haven't tested it because I lack the neccessary hardware, but you should get the point:

uniform mat4 modelViewProj;

layout(location=0) in vec4 vertex;

void main()
{
    gl_Position = modelViewProj * vertex;
}

The vertex shader is a simple pass through.

layout(lines) in;
layout(line_strip, max_vertices=2) out;

uniform vec2 screenSize;
uniform float patternSize;

noperspective out float texCoord;

void main()
{
    vec2 winPos0 = screenSize.xy * gl_in[0].gl_Position.xy / gl_in[0].gl_Position.w;
    vec2 winPos1 = screenSize.xy * gl_in[1].gl_Position.xy / gl_in[1].gl_Position.w;
    gl_Position = gl_in[0].gl_Position;
    texCoord = 0.0;
    EmitVertex();
    gl_Position = gl_in[1].gl_Position;
    texCoord = 0.5 * length(winPos1-winPos0) / patternSize;
    EmitVertex();
}

In the geometry shader we take a line and compute its screen space length in pixels. We then devide this by the size of the stipple pattern texture, which would be factor*16 when emulating a call to glLineStipple(factor, pattern). This is taken as 1D texture coordinate of the second line end point.

Note that this texture coordinate has to be interpolated linearly (noperspective interpolation specifier). The usual perpective-correct interpolation would cause the stipple pattern to "squeeze together" on farther away parts of the line, whereas we are explicitly working with screen-space values.

uniform sampler1D pattern;
uniform vec4 lineColor;

noperspective in float texCoord;

layout(location=0) out vec4 color;

void main()
{
    if(texture(pattern, texCoord).r < 0.5)
        discard;
    color = lineColor;
}

The fragment shader now just performs a simple alpha test using the value from the pattern texture, which contains a 1 for line and a 0 for no line. So to emulate the fixed function stipple you would have a 16 pixel 1-component 1D texture instead of a 16bit pattern. Don't forget to set the pattern's wrapping mode to GL_REPEAT, about the filtering mode I'm not that sure, but I suppose GL_NEAREST would be a good idea.

But as said earlier, if you want to render triangles using glPolygonMode, it won't work this way. Instead you have to adapt the geometry shader to accept triangles and generate 3 lines for each triangle.


EDIT: In fact OpenGL 3's direct support for integer operations in shaders allows us to completely drop this whole 1D-texture approach and work straight-forward with an actual bit-pattern. Thus the geometry shader is slightly changed to put out the actual screen-size pattern coordinate, without normalization:

texCoord = 0.5 * length(winPos1-winPos0);

In the fragment shader we then just take a bit pattern as unsigned integer (though 32-bit in contrast to glLineStipple's 16-bit value) and the stretch factor of the pattern and just take the texture coordinate (well, no texture anymore actually, but nevermind) modulo 32 to get it's position on the pattern (those explicit uints are annoying, but my GLSL compiler says implicit conversions between int and uint are evil):

uniform uint pattern;
uniform float factor;

...
uint bit = uint(round(linePos/factor)) & 31U;
if((pattern & (1U<<bit)) == 0U)
    discard;
于 2011-05-16T12:17:19.730 回答
12

要回答这个问题,我们首先要调查一下到底是什么glLineStipple

参见图像,其中左侧的四边形由 4 个分开的线段使用原始类型绘制GL_LINES
右边的圆是由一条连续的多边形线绘制的,使用原始类型GL_LINE_STRIP

使用线段时,点画图案从每个线段开始。模式在每个基元处重新启动。
使用线条时,点画图案将无缝应用于整个多边形。超越顶点坐标无缝连续的图案。
请注意,图案的长度在对角线处被拉伸。这可能是实现的关键。

对于单独的线段,这根本不是很复杂,但是对于线条来说,事情变得有点复杂。在不知道线的所有图元的情况下,无法在着色器程序中计算线的长度。即使已知所有原语(例如 SSBO),也必须在循环中完成计算。
另请参阅带有 OpenGL 核心配置文件的虚线

无论如何,没有必要实现几何着色器。诀窍是知道片段着色器中线段的起点。这很容易通过使用flat插值限定符。

顶点着色器必须将标准化的设备坐标传递给片段着色器。一次使用默认插值,一次没有(平面)插值。这导致在片段阴影中,第一个输入参数包含行上实际位置的 NDC 坐标,后面是行开始的 NDC 坐标。

#version 330

layout (location = 0) in vec3 inPos;

flat out vec3 startPos;
out vec3 vertPos;

uniform mat4 u_mvp;

void main()
{
    vec4 pos    = u_mvp * vec4(inPos, 1.0);
    gl_Position = pos;
    vertPos     = pos.xyz / pos.w;
    startPos    = vertPos;
}

此外,随着输入的变化,片段着色器具有统一的变量。u_resolution包含视口的宽度和高度。u_factor是乘数和u_pattern根据参数的 16 位模式glLineStipple

所以可以计算出从开始到实际片段的线长度:

vec2  dir  = (vertPos.xy-startPos.xy) * u_resolution/2.0;
float dist = length(dir);

并且可以通过discard命令丢弃间隙上的片段。

uint bit = uint(round(dist / u_factor)) & 15U;
if ((u_pattern & (1U<<bit)) == 0U)
    discard; 

片段着色器:

#version 330

flat in vec3 startPos;
in vec3 vertPos;

out vec4 fragColor;

uniform vec2  u_resolution;
uniform uint  u_pattern;
uniform float u_factor;

void main()
{
    vec2  dir  = (vertPos.xy-startPos.xy) * u_resolution/2.0;
    float dist = length(dir);

    uint bit = uint(round(dist / u_factor)) & 15U;
    if ((u_pattern & (1U<<bit)) == 0U)
        discard; 
    fragColor = vec4(1.0);
}

这个实现比使用几何着色器更容易和更短。自GLSL 1.30GLSL ES 3.00flat起支持插值限定符。在此版本中不支持几何着色器。 查看使用上述着色器生成的线条渲染。

着色器给出了正确的结果线段,但线条失败,因为点画图案在每个顶点坐标处重新开始。
这个问题甚至不能通过几何着色器来解决。这部分问题仍未解决。

对于以下简单的演示程序,我使用GLFW API 创建窗口,使用 GLEW加载 OpenGL,使用GLM -OpenGL 数学进行数学运算。我不提供函数的代码CreateProgram,它只是从顶点着色器和片段着色器源代码中创建一个程序对象:

#include <vector>
#include <string>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <gl/gl_glew.h>
#include <GLFW/glfw3.h>

std::string vertShader = R"(
#version 330

layout (location = 0) in vec3 inPos;

flat out vec3 startPos;
out vec3 vertPos;

uniform mat4 u_mvp;

void main()
{
    vec4 pos    = u_mvp * vec4(inPos, 1.0);
    gl_Position = pos;
    vertPos     = pos.xyz / pos.w;
    startPos    = vertPos;
}
)";

std::string fragShader = R"(
#version 330

flat in vec3 startPos;
in vec3 vertPos;

out vec4 fragColor;

uniform vec2  u_resolution;
uniform uint  u_pattern;
uniform float u_factor;

void main()
{
    vec2  dir  = (vertPos.xy-startPos.xy) * u_resolution/2.0;
    float dist = length(dir);

    uint bit = uint(round(dist / u_factor)) & 15U;
    if ((u_pattern & (1U<<bit)) == 0U)
        discard; 
    fragColor = vec4(1.0);
}
)";

GLuint CreateVAO(std::vector<glm::vec3> &varray)
{
    GLuint bo[2], vao;
    glGenBuffers(2, bo);
    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);
    glEnableVertexAttribArray(0); 
    glBindBuffer(GL_ARRAY_BUFFER, bo[0] );
    glBufferData(GL_ARRAY_BUFFER, varray.size()*sizeof(*varray.data()), varray.data(), GL_STATIC_DRAW);
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0); 

    return vao;
}

int main(void)
{
    if ( glfwInit() == 0 )
        return 0;
    GLFWwindow *window = glfwCreateWindow( 800, 600, "GLFW OGL window", nullptr, nullptr );
    if ( window == nullptr )
        return 0;
    glfwMakeContextCurrent(window);

    glewExperimental = true;
    if ( glewInit() != GLEW_OK )
        return 0;

    GLuint program    = CreateProgram(vertShader, fragShader);
    GLint loc_mvp     = glGetUniformLocation(program, "u_mvp");
    GLint loc_res     = glGetUniformLocation(program, "u_resolution");
    GLint loc_pattern = glGetUniformLocation(program, "u_pattern");
    GLint loc_factor  = glGetUniformLocation(program, "u_factor");

    glUseProgram(program);

    GLushort pattern = 0x18ff;
    GLfloat  factor  = 2.0f;
    glUniform1ui(loc_pattern, pattern);
    glUniform1f(loc_factor, factor);
    //glLineStipple(2.0, pattern);
    //glEnable(GL_LINE_STIPPLE);

    glm::vec3 p0(-1.0f, -1.0f, 0.0f);
    glm::vec3 p1(1.0f, -1.0f, 0.0f);
    glm::vec3 p2(1.0f, 1.0f, 0.0f);
    glm::vec3 p3(-1.0f, 1.0f, 0.0f);
    std::vector<glm::vec3> varray1{ p0, p1, p1, p2, p2, p3, p3, p0 };
    GLuint vao1 = CreateVAO(varray1);

    std::vector<glm::vec3> varray2;
    for (size_t u=0; u <= 360; u += 8)
    {
        double a = u*M_PI/180.0;
        double c = cos(a), s = sin(a);
        varray2.emplace_back(glm::vec3((float)c, (float)s, 0.0f));
    }
    GLuint vao2 = CreateVAO(varray2);

    glm::mat4(project);
    int vpSize[2]{0, 0};
    while (!glfwWindowShouldClose(window))
    {
        int w, h;
        glfwGetFramebufferSize(window, &w, &h);
        if (w != vpSize[0] ||  h != vpSize[1])
        {
            vpSize[0] = w; vpSize[1] = h;
            glViewport(0, 0, vpSize[0], vpSize[1]);
            float aspect = (float)w/(float)h;
            project = glm::ortho(-aspect, aspect, -1.0f, 1.0f, -10.0f, 10.0f);
            glUniform2f(loc_res, (float)w, (float)h);
        }

        glClear(GL_COLOR_BUFFER_BIT);

        glm::mat4 modelview1( 1.0f );
        modelview1 = glm::translate(modelview1, glm::vec3(-0.6f, 0.0f, 0.0f) );
        modelview1 = glm::scale(modelview1, glm::vec3(0.5f, 0.5f, 1.0f) );
        glm::mat4 mvp1 = project * modelview1;

        glUniformMatrix4fv(loc_mvp, 1, GL_FALSE, glm::value_ptr(mvp1));
        glBindVertexArray(vao1);
        glDrawArrays(GL_LINES, 0, (GLsizei)varray1.size());

        glm::mat4 modelview2( 1.0f );
        modelview2 = glm::translate(modelview2, glm::vec3(0.6f, 0.0f, 0.0f) );
        modelview2 = glm::scale(modelview2, glm::vec3(0.5f, 0.5f, 1.0f) );
        glm::mat4 mvp2 = project * modelview2;

        glUniformMatrix4fv(loc_mvp, 1, GL_FALSE, glm::value_ptr(mvp2));
        glBindVertexArray(vao2);
        glDrawArrays(GL_LINE_STRIP, 0, (GLsizei)varray2.size());

        glfwSwapBuffers(window);
        glfwPollEvents();
    }
    glfwTerminate();

    return 0;
}

另请参阅
OpenGL3 中的虚线?
OpenGL ES - 虚线

于 2019-03-10T14:28:04.100 回答
0

由于我努力(不是双关语)来让它正确,我认为如果我分享我的一组基于 Christian Rau 版本的点画着色器的实现,它可能对其他人有用。为了控制图案密度,片段着色器需要nPatterns视口单位长度的图案数量 - 而不是设置因子。还包括一个可选的剪裁平面功能。剩下的主要是评论和清理。

免费用于所有意图和目的。

顶点着色器:

#version 330

in vec4 vertex;

void main(void)
{
    // just a pass-through
    gl_Position = vertex;
}

几何着色器:

#version 330

layout(lines) in;
layout(line_strip, max_vertices = 2) out;

uniform mat4 pvmMatrix;
uniform mat4 mMatrix;
uniform mat4 vMatrix;


out vec3 vPosition;  // passed to the fragment shader for plane clipping
out float texCoord;  // passed to the fragment shader for stipple pattern

void main(void)
{
    // to achieve uniform pattern density whatever the line orientation
    // the upper texture coordinate is made proportional to the line's length
    vec3 pos0 = gl_in[0].gl_Position.xyz;
    vec3 pos1 = gl_in[1].gl_Position.xyz;
    float max_u_texture = length(pos1 - pos0);

    // Line Start
    gl_Position = pvmMatrix * (gl_in[0].gl_Position);
    texCoord = 0.0;
    // depth position for clip plane
    vec4 vsPos0 = vMatrix * mMatrix * gl_Position;
    vPosition = vsPos0.xyz / vsPos0.w;
    EmitVertex();  // one down, one to go

    // Line End
    gl_Position = pvmMatrix * (gl_in[1].gl_Position);
    texCoord = max_u_texture;
    // depth position for clip plane
    vec4 vsPos1 = vMatrix * mMatrix * gl_Position;
    vPosition = vsPos0.xyz / vsPos0.w;
    EmitVertex();

    // done
    EndPrimitive();
}

片段着色器:

#version 330

uniform int pattern;   // an integer between 0 and 0xFFFF representing the bitwise pattern
uniform int nPatterns; // the number of patterns/unit length of the viewport, typically 200-300 for good pattern density
uniform vec4 color;
uniform vec4 clipPlane0; // defined in view-space

in float texCoord;

in vec3 vPosition;

layout(location=0) out vec4 fragColor;

void main(void)
{
    // test vertex postion vs. clip plane position (optional)
    if (vPosition.z > clipPlane0.w) {
        discard;
        return;
    }

    // use 4 bytes for the masking pattern
    // map the texture coordinate to the interval [0,2*8[
    uint bitpos = uint(round(texCoord * nPatterns)) % 16U;
    // move a unit bit 1U to position bitpos so that
    // bit is an integer between 1 and 1000 0000 0000 0000 = 0x8000
    uint bit = (1U << bitpos);

    // test the bit against the masking pattern
    //  Line::SOLID:       pattern = 0xFFFF;  // = 1111 1111 1111 1111 = solid pattern
    //  Line::DASH:        pattern = 0x3F3F;  // = 0011 1111 0011 1111
    //  Line::DOT:         pattern = 0x6666;  // = 0110 0110 0110 0110
    //  Line::DASHDOT:     pattern = 0xFF18;  // = 1111 1111 0001 1000
    //  Line::DASHDOTDOT:  pattern = 0x7E66;  // = 0111 1110 0110 0110
    uint up = uint(pattern);

    // discard the bit if it doesn't match the masking pattern
    if ((up & bit) == 0U) discard;

    fragColor = color;
}
于 2019-03-04T14:40:44.770 回答