我正在关注一篇关于基于 BERT 的词法替换的论文(特别是尝试实现等式(2)——如果有人已经实现了整篇论文,那也很棒)。因此,我想同时获得最后的隐藏层(我唯一不确定的是输出中层的顺序:最后一个还是第一个?)以及来自基本 BERT 模型(bert-base-uncased)的注意力。
但是,我有点不确定huggingface/transformers 库是否真的为 bert-base-uncased 输出了注意力(我使用的是 Torch,但我愿意使用 TF 代替)?
从我读过的内容来看,我应该得到一个 (logits, hidden_states, attentions) 的元组,但是在下面的示例中(例如在 Google Colab 中运行),我得到的长度为 2。
我是否误解了我所得到的或以错误的方式解决这个问题?我做了明显的测试并使用output_attention=False
而不是output_attention=True
(虽然output_hidden_states=True
确实似乎添加了隐藏状态,正如预期的那样)并且我得到的输出没有任何变化。这显然是我对图书馆理解的一个不好的迹象,或者表明存在问题。
import numpy as np
import torch
!pip install transformers
from transformers import (AutoModelWithLMHead,
AutoTokenizer,
BertConfig)
bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
config = BertConfig.from_pretrained('bert-base-uncased', output_hidden_states=True, output_attention=True) # Nothign changes, when I switch to output_attention=False
bert_model = AutoModelWithLMHead.from_config(config)
sequence = "We went to an ice cream cafe and had a chocolate ice cream."
bert_tokenized_sequence = bert_tokenizer.tokenize(sequence)
indexed_tokens = bert_tokenizer.encode(bert_tokenized_sequence, return_tensors='pt')
predictions = bert_model(indexed_tokens)
########## Now let's have a look at what the predictions look like #############
print(len(predictions)) # Length is 2, I expected 3: logits, hidden_layers, attention
print(predictions[0].shape) # torch.Size([1, 16, 30522]) - seems to be logits (shape is 1 x sequence length x vocabulary
print(len(predictions[1])) # Length is 13 - the hidden layers?! There are meant to be 12, right? Is one somehow the attention?
for k in range(len(predictions[1])):
print(predictions[1][k].shape) # These all seem to be torch.Size([1, 16, 768]), so presumably the hidden layers?
解释最终受接受答案启发的工作
import numpy as np
import torch
!pip install transformers
from transformers import BertModel, BertConfig, BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
config = BertConfig.from_pretrained('bert-base-uncased', output_hidden_states=True, output_attentions=True)
model = BertModel.from_pretrained('bert-base-uncased', config=config)
sequence = "We went to an ice cream cafe and had a chocolate ice cream."
tokenized_sequence = tokenizer.tokenize(sequence)
indexed_tokens = tokenizer.encode(tokenized_sequence, return_tensors='pt'
enter code here`outputs = model(indexed_tokens)
print( len(outputs) ) # 4
print( outputs[0].shape ) #1, 16, 768
print( outputs[1].shape ) # 1, 768
print( len(outputs[2]) ) # 13 = input embedding (index 0) + 12 hidden layers (indices 1 to 12)
print( outputs[2][0].shape ) # for each of these 13: 1,16,768 = input sequence, index of each input id in sequence, size of hidden layer
print( len(outputs[3]) ) # 12 (=attenion for each layer)
print( outputs[3][0].shape ) # 0 index = first layer, 1,12,16,16 = , layer, index of each input id in sequence, index of each input id in sequence