1

我正在估计数据不足和不平衡的门票销售。为了解决这个问题,我使用了 smogn 包中的 smoter(smote for regression)。但是每次我运行我的模型时,我对我的目标都有不同的预测。我认为 smoter 每次都会生成不同的输出数据。有没有办法解决这个随机状态?

请指导我可以在这里做什么,下面是代码片段。

import smogn

def solution(df, p_bar: bool = 1, params: dict = model_params):
    # sort
    try:
        df = df.sort_values(["transition_date", "event_date"], ascending=False)
    except Exception as e:
        print("e")

    # bootstraping hyperparams
    n_samples = 140
    n_range = 40

    # tqdm
    if p_bar == 1:
        rg = tqdm(range(len(df)))
    else:
        rg = range(len(df))

    pred_list = []
    time.sleep(0.5)
    try:
        for i in rg:
            time.sleep(0.1)
            test_tour_id = df.iloc[i]['tour_id']
            df_without_test_tour = df[df['tour_id'] != test_tour_id].reset_index(drop=True)
            dt = smogn.smoter(
                data=df_without_test_tour,
                y='total_sales',
                k=3,
                samp_method='extreme',

                rel_thres=0.8,
                rel_method='auto',
                rel_xtrm_type='high',
                rel_coef=2.25
            )

            test_data = df.iloc[[i]].drop(e_col, axis=1)
            test_label = [df.iloc[i]['total_sales']]
            test_prid_id = df.iloc[i ]['promotion_id']

            train_data = dt.drop(e_col, axis=1)
            train_label = dt['total_sales']
            pred_tmp = []
            for j in range(n_range):
                x_train = resample(train_data, n_samples=n_samples, random_state=j)
                y_train = resample(train_label, n_samples=n_samples, random_state=j)

                model = xgb.get_model(x_train, y_train, params)
                pred = model.predict(test_data)

                pred_tmp.append(pred)

            pred = np.mean(pred_tmp, axis=0)
            mape_pred = abs(test_label - pred) * 100 / pred
            mape_real = abs(test_label - pred) * 100 / test_label

            pred_list.append([test_prid_id, pred[0], mape_pred[0], mape_real[0]])
    except Exception as ex:
        print(ex)
        tqdm._instances.clear() if p_bar == 1 else None

    pred = pd.DataFrame(pred_list, columns=['promotion_id', 'pred', 'mape_pred', 'mape_real'])
    return pd.merge(pred, df[e_col], how='left')

4

1 回答 1

0

事实证明,Smote Regress它选择最近邻居的方式有一些随机性:

在他们的代码中查看代码行:这里

尽管我假设您使用的是Nick Kunz 的存储库中的 Python 版本,但我建议您使用此处的 R 版本。如果您在机器学习项目中使用 Python,请考虑使用rpy2python 模块在 R 和 Python 之间进行通信

于 2020-04-19T10:11:34.200 回答