这很容易解决......我只需要指定“线段”的域并测试域中投影点的包含情况。此解决方案适用于 2D 或 3D。
这是完成的代码:
/// <summary>
/// Finds the closest point on a vector given a test point
/// </summary>
/// <param name="testPoint"></param>
/// <param name="startVertex"></param>
/// <param name="segment"></param>
/// <returns></returns>
public static Vec3 VectorClosestPoint(Vec3 testPoint, Vec3 startVertex,Vec3 segment)
{
Vec3 onCurve = new Vec3();
Vec3 b = testPoint - startVertex;
Vec3 proj = Project(b, segment, out double dotProduct);
Vec3 onCurveTemp = startVertex + proj;
Vec3 endVertex = startVertex + segment;
// Specify the domain of the function.
// This part constraints the domain if the function is not infinite.
Domain domainX = new Domain(startVertex.X, endVertex.X);
Domain domainY = new Domain(startVertex.Y, endVertex.Y);
Domain domainZ = new Domain(startVertex.Z, endVertex.Z);
// Constraints projected points to be in the line, given the specified
// domain of the function
bool onLine = OnLine(domainX, domainY, domainZ, onCurveTemp);
if (dotProduct < 0) onCurve = startVertex;
if (dotProduct > 0 && onLine == false) onCurve = endVertex;
if (dotProduct > 0 && onLine == true) onCurve = onCurveTemp;
return onCurve;
}
/// <summary>
/// Returns the dot product of two vectors
/// This value equals vecA.Magnitude * vecB.Magnitude * cos(theta), where theta is the angle between both vectors.
/// </summary>
/// <param name="vecA"></param>
/// <param name="VecB"></param>
/// <returns></returns>
public static double DotProduct(Vec3 vecA, Vec3 VecB)
{
return vecA.X * VecB.X + vecA.Y * VecB.Y + vecA.Z * VecB.Z;
}
/// <summary>
/// Tests whether a Point lies on a vector
/// </summary>
/// <param name="domainX">X- Domain</param>
/// <param name="domainY"> Y - Domain </param>
/// <param name="domainZ">Z - Domain</param>
/// <param name="pt">Point to test for inclusion </param>
/// <returns>Returns true if point is on the line, false otherwise</returns>
public static bool OnLine(Domain domainX, Domain domainY, Domain domainZ, Vec3 pt)
{
if (Domain.InDomain(domainX.Min, domainX.Max, pt.X) && Domain.InDomain(domainY.Min, domainY.Max, pt.Y) &&
Domain.InDomain(domainZ.Min, domainZ.Max, pt.Z))
{
return true;
}
else return false;
}
/// <summary>
/// Projection of vecA on to vecB
/// </summary>
/// <param name="vecA"></param>
/// <param name="vecB"></param>
/// <returns></returns>
public static Vec3 Project(Vec3 vecA, Vec3 vecB, out double dotProduct)
{
dotProduct = DotProduct(vecA, vecB);
return dotProduct / vecB.SqrMagnitude * vecB;
// or to save Sqr operation return dotProduct / DotProduct(vecB, vecB) * vecB;
}
/// <summary>
/// Tests whether a number is inside a domain
/// </summary>
/// <param name="minVal">Minimum value</param>
/// <param name="maxVal">Maximum value</param>
/// <param name="numToTest">Number to test </param>
/// <returns>True if in domain, false otherwise </returns>
public static bool InDomain(double minVal, double maxVal, double numToTest)
{
double min = 0;
double max = 0;
if (minVal > maxVal)
{
min = maxVal;
max = minVal;
}
if (minVal < maxVal)
{
min = minVal;
max = maxVal;
}
if (numToTest >= min && numToTest <= max) return true;
else return false;
}